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Metabotropic glutamate receptor subtypes (mGlu2/3) regulate a variety of alcohol-associated behaviors, including alcohol reinforcement,

and relapse-like behavior. To date, the role of mGlu2/3 receptors in modulating the discriminative stimulus effects of alcohol has not

been examined. Given that the discriminative stimulus effects of drugs are determinants of abuse liability and can influence drug seeking,

we examined the contributions of mGlu2/3 receptors in modulating the discriminative stimulus effects of alcohol. In male Long-Evans rats

trained to discriminate between alcohol (1 g/kg, IG) and water, the mGlu2/3 agonist LY379268 (0.3–10mg/kg) did not produce alcohol-

like stimulus effects. However, pretreatment with LY379268 (1 and 3mg/kg; in combination with alcohol) inhibited the stimulus effects of

alcohol (1 g/kg). Systemic LY379268 (3mg/kg, i.p.) was associated with increases in neuronal activity within the amygdala, but not the

nucleus accumbens, as assessed by c-Fos immunoreactivity. Intra-amygdala activation of mGlu2/3 receptors by LY379268 (6 mg) inhibited
the discriminative stimulus effects of alcohol, without altering response rate. In contrast, intra-accumbens LY379268 (3 mg) profoundly
reduced response rate; however, at lower LY379268 doses (0.3, 1mg), the discriminative stimulus effects of alcohol and response rate

were not altered. These data suggest that amygdala mGlu2/3 receptors have a functional role in modulating the discriminative stimulus

properties of alcohol and demonstrate differential motor sensitivity to activation of mGlu2/3 receptors in the amygdala and the

accumbens. Understanding the neuronal mechanisms that underlie the discriminative stimulus effects of alcohol may prove to be

important for future development of pharmacotherapies for treating alcoholism.
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INTRODUCTION

Drugs of abuse share the common attribute that they
produce distinct subjective or interoceptive effects. In both
humans and animals, these interoceptive drug effects can
serve as discriminative stimuli, such that the subject uses
these interoceptive cues to distinguish between drug
and non-drug conditions. In addition to reinforcement
processes, these discriminative stimulus effects represent
a major controlling process of drug seeking behavior
(Stolerman, 1992; Wise et al, 2008). To date, there is a
growing interest in the role of metabotropic glutamate
receptors, subtypes 2 and 3 (mGlu2/3), in modulating drug
taking and seeking behavior. For example, systemic admin-

istration of mGlu2/3 receptor agonists has been shown to
inhibit cocaine and nicotine self-administration (Baptista
et al, 2004; Adewale et al, 2006; Liechti et al, 2007). In
relation to alcohol, systemic mGlu2/3 receptor activation can
reduce alcohol self-administration (Backstrom and Hyytia,
2005; Sidhpura and Weiss, 2010; but see Rodd et al, 2006)
and relapse-like behavior (Rodd et al, 2006; Zhao et al, 2006;
Sidhpura and Weiss, 2010). However, the potential role of
mGlu2/3 receptors in regulating the discriminative stimulus
effects of alcohol has not been examined.
mGlu2/3 receptors are members of the group II family of

mGluRs. These Gi-coupled receptors function as autorecep-
tors; regulating presynaptic neurotransmitter release
(Baskys and Malenka, 1991; Liu et al, 1993; Macek et al,
1996; Marek et al, 2000; Molinaro et al, 2009; Farazifard and
Wu, 2010). As such, activation of mGlu2/3 receptors
decreases the synaptic availability of glutamate, allowing
for ‘refinement’ of glutamatergic neurotransmission
(Schoepp, 2001; Pinheiro and Mulle, 2008). Given the
functional role of mGlu2/3 receptors in modulatingReceived 4 March 2011; revised 4 May 2011; accepted 6 June 2011
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glutamate release and that the discriminative stimulus
effects of alcohol are generally characterized by processes
that reduce/inhibit glutamatergic neurotransmission
(Kostowski and Bienkowski, 1999), such that N-methyl-D-
aspartic acid (NMDA) antagonists and g-aminobutyric acid
type A (GABAA)-positive modulators produce alcohol-like
discriminative stimulus effects (Jarbe and McMillan, 1983;
Schechter et al, 1993; Ator et al, 1993; Bienkowski et al,
1997; Hundt et al, 1998; Grant et al, 2000; Shelton and
Grant, 2002; Vivian et al, 2002; Helms et al, 2009), we
hypothesized that mGlu2/3 receptors may have a modula-
tory role in the expression of the discriminative stimulus
effects of alcohol. Further support for this hypothesis comes
from studies showing that mGlu2/3 receptors are highly
expressed in limbic brain regions (Petralia et al, 1996;
Ohishi et al, 1998; Ferraguti and Shigemoto, 2006) known to
modulate the discriminative stimulus effects of alcohol,
such as the nucleus accumbens and the amygdala (Hodge
and Aiken, 1996; Hodge and Cox, 1998; Hodge et al, 2001;
Besheer et al, 2003).
Accordingly, the purpose of this study was to examine the

role of mGlu2/3 receptors in modulating the discriminative
stimulus effects of alcohol. Male Long-Evans rats were
trained to discriminate between a moderate dose of alcohol
(1 g/kg) and water administered orally by gavage (IG) on a
well-characterized two lever drug discrimination task. We
first examined whether systemic pharmacological activation
of mGlu2/3 receptors by LY379268, a selective mGlu2/3
receptor agonist (Monn et al, 1999), produces alcohol-like
discriminative stimulus effects and/or modulates the dis-
criminative stimulus effects of alcohol. Next, we sought to
identify whether mGlu2/3 receptor activation is associated
with changes in neuronal activity in specific brain regions
as measured by c-Fos immunoreactivity (IR) using im-
munohistochemistry techniques. Finally, guided by the
anatomical specificity of those results, discrimination-
trained rats were implanted with bilateral cannulae aimed
at the amygdala and nucleus accumbens (anatomical
control) for site-specific LY379268 administration to
directly assess the functional role of mGlu2/3 receptor
activation within these regions in modulating the expres-
sion of the discriminative stimulus effects of alcohol.

MATERIALS AND METHODS

Animals

Male Long-Evans rats (Harlan Sprague Dawley, Indianapolis,
IN) were individually housed in Plexiglas cages. Before
training, male rats were weighed and handled daily. Food
intake was restricted to approximately 16 g of food/day to
maintain body weight (325–340 g). Water was available ad
libitum in the home cage unless noted. The colony room
was maintained on a 12-h light/dark cycle. Experiments
were conducted during the light cycle (between 0800 and
1100 hours). Animals were under continuous care and
monitoring by veterinary staff from the Division of
Laboratory Animal Medicine at UNC-Chapel Hill. All
procedures were conducted in accordance with the NIH
Guide to Care and Use of Laboratory Animals and
institutional guidelines.

Alcohol Discrimination Training and Testing
Procedures

Lever press training. Rats were trained to lever press on a
fixed ratio 1 (FR1) schedule of sucrose (10% (w/v))
reinforcement in operant conditioning chambers (Med
Associates, Georgia, VT). A single lever (left or right) was
present on alternating training days as the FR schedule was
gradually increased to FR10. Alcohol discrimination train-
ing began after stabilization of response rates on both levers
with o10% daily variation in total responses.

Discrimination training. Alcohol (1 g/kg) or water was
administered IG before daily training sessions (M-F).
Immediately following alcohol or water, rats were placed
in the chambers for a 10-min timeout period. Next, the
house light was illuminated and both levers were intro-
duced, signaling commencement of the 15-min session.
Training days varied on a double alternation schedule
(water, water, alcohol, alcoholy). Completion of 10
responses on the alcohol-appropriate lever (eg, left lever)
resulted in the presentation of the sucrose solution.
Likewise, completion of 10 responses on the water-
appropriate lever (eg, right lever) resulted in sucrose
delivery. Responses on the inappropriate lever were
recorded, but produced no programmed consequences.
Water- and alcohol-associated levers were randomly
assigned and counterbalanced across animals. Testing
began when the accuracy criteria were met: the percentage
of appropriate lever responses before the first reinforcer,
and during the entire session was 480% for at least 8 out of
the 10 consecutive days.

Testing. Test sessions were similar to training sessions
except that they were 2min in duration (after 10-min delay),
and 10 responses on either lever resulted in sucrose
delivery. Reinforcement was delivered to examine the
effects of treatments on overall response rates (internal
measure of nonspecific motor effects). Test sessions were
interspersed with training sessions if performance during
X3 of 4 previous training sessions met accuracy criteria.

Confirmation of Discriminative Stimulus Control By
Alcohol

Cumulative alcohol dose substitution curve. An alcohol
dose substitution curve was determined before testing of
LY379268 to ensure alcohol stimulus control. Cumulative
dosing procedures (Hiltunen and Jarbe, 1989; Hodge et al,
2001; Besheer et al, 2009) were used for all testing sessions
(excluding microinjection studies). To determine a cumu-
lative alcohol dose response curve (0.1, 0.3, 1.0, 1.7 g/kg),
rats initially received 0.1 g/kg alcohol and were placed in the
chamber for a 10-min delay period followed by a 2-min test
session. After the session, rats received a subsequent
alcohol administration of 0.2 g/kg (0.3 g/kg cumulative
dose) and another delay/test session. This procedure was
repeated with two subsequent administrations of 0.7 g/kg
alcohol, which are additive to produce the stated dose
range. Thus, testing of the entire dose curve was completed
inB48min. No more than two test sessions were conducted
per week.
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Effects of LY379268 Alone and in Combination with
Alcohol

Systemic agonist substitution for alcohol. Cumulative
doses of LY379268 (0.3, 1, 3, 10mg/kg, i.p.; n¼ 10) were
tested to determine whether mGlu2/3 receptor activation
produced alcohol-like stimulus effects. Doses within this
range have been reported to be effective at reducing alcohol
self-administration and seeking behavior (Backstrom
and Hyytia, 2005; Rodd et al, 2006; Sidhpura and Weiss,
2010). Water/alcohol administration was withheld during
these tests.

Effects of systemic mGlu2/3 receptor activation on the
discriminative stimulus effects of alcohol. At 2 weeks
following the agonist substitution test, a cumulative alcohol
substitution test (0.1, 0.3, 1.0, 1.7 g/kg) was performed to
determine whether mGlu2/3 receptor activation altered the
discriminative stimulus effects of alcohol. LY379268 (0, 1,
3mg/kg) was administered at 10min before the first alcohol
dose of the cumulative alcohol substitution test. LY379268
doses were tested according to a randomized within
subjects design.

Examination of c-Fos IR in the Amygdala and Nucleus
Accumbens

c-Fos immunohistochemistry. Experimentally naive male
Long-Evans rats were divided into two groups and
administered saline (i.p.) or LY379268 (3mg/kg; i.p.;
n¼ 5/group). Approximately, at 110min after the injection,
rats were anesthetized and brains were extracted after
transcardial perfusion. Tissue was sliced into 40 mm sections
and stored (�20 1C) until further processing. Sections were
immunolabeled by rabbit anti-c-Fos antibody (1:20 000
dilution; Calbiochem) using a biotinylated secondary
anti-rabbit antibody conjugated to an avidin–biotin com-
plex (Vector ABC kit, Vector Laboratories). c-Fos-IR
was visualized by diaminobenzidine solution (Polysciences,
Warrington, PA; see Supplementary Materials and
Methods).

Immunohistochemical quantification. c-Fos-IR was visua-
lized using an Olympus CX41 light microscope (Olympus
America, Center Valley, PA). IR was quantified with image
analysis software (Bioquant Nova; R&M Biometric, Nash-
ville, TN) using a digital camera (Regita model, QImaging,
Burnaby, BC) interfaced to a computer (Dell, Round Rock,
TX). The microscope, camera, and software were back-
ground corrected and normalized to preset light levels to
ensure fidelity of data acquisition. c-Fos-IR pixel count
measurements were calculated from a circumscribed field
(eg, brain region) and divided by the area of the region and
expressed as c-Fos-positive pixels/mm2. Analysis was
conducted by a researcher blind to the treatment condi-
tions. Data were acquired from at least three sections/brain
region/animal for c-Fos-IR and analyses were averaged to
obtain one value per subject. The regions examined were
the amygdala (central nucleus (CeA); basal lateral nucleus
(BLA); lateral dorsal nucleus (LaDL); �1.80 to �2.50 AP)
and nucleus accumbens (shell and core; + 1.70 to + 1.00
AP; Paxinos and Waton, 1998).

Effects of Intra-Amygdala and Intra-Accumbens
mGlu2/3 Receptor Activation on the Discriminative
Stimulus Effects of Alcohol

Surgery and drug administration. Stereotaxic surgery was
performed in discrimination-trained rats (n¼ 12). Two sets
of bilateral guide cannulae (26-gauge; Plastics One,
Roanoke, VA) were implanted to terminate 2mm above
the nucleus accumbens (core) and the amygdala (CeA). The
coordinates for the nucleus accumbens and amygdala were
AP + 1.7, ML + 1.5mm, DV �5.5mm, and AP �1.9, ML +
4.2, �6.5 DV (from skull), respectively (Paxinos and Waton,
1998). We made no attempt to functionally distinguish
specific sub-nuclei of the accumbens (eg, core vs shell) or
amygdala (eg, CeA, BLA, or LaDL) based on evidence that
suggests that the distance of drug diffusion after micro-
injection could possibly be larger than the distance between
each sub-nuclei (Perez de la Mora et al, 2006). Rats were
allowed 1 week for recovery before resuming alcohol
discrimination training.
Site-specific bilateral microinjections were made with

1.0 ml Hamilton syringes connected to 33-gauge injectors
(Plastics One, Roanoke, VA) extending 2mm below the
guide cannulae. A pump (Harvard Apparatus, Natick, MA)
delivered a volume of 0.5 ml/side for 1min. The injector
remained in place for 1.5min after injections to allow for
diffusion. LY379268 was micro-infused into the amygdala
(0, 0.3, 3, 6 mg/0.5 ml/side) or nucleus accumbens (0, 0.3, 1,
3 mg/0.5 ml/side). After the diffusion period, rats received a
single alcohol dose (1 g/kg, IG) and were placed in the
chamber for a test session (similar to the systemic dosing
test sessions, with the exception that rats experienced a
single test). For the first four tests, all rats received a sham
injection and a vehicle injection in the nucleus accumbens
and a sham injection and vehicle injection in the amygdala.
After initial tests, a single LY379268 and alcohol dose
(1 g/kg) combination was randomly tested in each brain
region during each session. Cannulae placements were
verified following microinjection experiments (see Supple-
mentary Materials and Methods).

Drugs. Alcohol (95% (w/v); Pharmco-AAPER, Shelbyville,
KY) was diluted in distilled water to 20% (v/v) and
administered IG. Alcohol volume was varied to achieve
doses of 0.1, 0.3, 1, and 1.7 g/kg. (1R,4R,5S,6R)-4-amino-2-
oxabicyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY379268;
Tocris, Ellisville, MI) and was dissolved in 0.9% saline
and injected at a volume of 1ml/kg (i.p.). LY379268 is a
systemically active potent agonist of group II mGlu
receptors and devoid of agonist or antagonist activity at
ionotropic glutamate receptors, mGlu1a, mGlu5a, or mGlu7
receptors (Monn et al, 1999). For microinfusion studies,
LY379268 was dissolved in artificial cerebral spinal fluid.

Data analysis. Response accuracy was expressed as a
percentage of alcohol-appropriate responses on delivery of
the first reinforcer. Response rate (responses/min) was
analyzed for the entire session and served as a measure of
locomotor ability/drug efficacy. Complete substitution
for alcohol was defined as 480% alcohol-appropriate
responding. Data from rats that did not complete an FR10
during test sessions were excluded from response accuracy

mGlu2/3 receptors in alcohol discrimination
R Cannady et al

2330

Neuropsychopharmacology



analysis, but included in the response rate analysis.
Response accuracy and response rate data were analyzed
by one or two-way repeated measures (RM) analysis of
variance (ANOVA) with Tukey post hoc comparisons.
c-Fos-IR was analyzed using Student’s t-tests to compare
treatment groups within brain regions. Significance was
declared at pp0.05.

RESULTS

Confirmation of Discriminative Stimulus Control by
Alcohol

Cumulative alcohol dose substitution curve. For each rat
tested in the discrimination experiments, alcohol discrimi-
native stimulus control was evaluated first by testing a range
of cumulative alcohol doses before mGlu2/3 receptor
agonist testing. Analyses are representative from all rats in
each of the three discrimination experiments (n¼ 22).
Alcohol-appropriate responding was significantly increased
in a dose-dependent manner after cumulative alcohol
administration (Figure 1a; F(3,60)¼ 38.221, po0.001), with
1.7 g/kg fully substituting (480%) for the alcohol training
dose (ie, producing stimulus properties similar to the
training dose). The 1.0 g/kg alcohol dose (training dose)
generally produces 490% alcohol-appropriate responding
during regular training sessions, but tends to produce
roughly 60% alcohol-appropriate responding during the
cumulative dosing procedure (Hodge et al, 2001; Besheer
et al, 2010). There were no significant changes in response
rate throughout cumulative alcohol testing (Figure 1b;
p¼ 0.076).

Effects of LY379268 Alone and in Combination with
Alcohol

Systemic agonist substitution for alcohol. The first
experiment was aimed at determining if activation of group
II mGlu receptors by LY379268 produced alcohol-like
discriminative stimulus effects (ie, alcohol substitution;

480% alcohol-appropriate responding). The cumulative
LY379268 dose range (0.3–10mg/kg, i.p.) did not substitute
for alcohol in rats trained to discriminate 1 g/kg alcohol
from water (p¼ 0.412; one-way RM ANOVA). The mean
(±SEM) percent alcohol-appropriate responding at
each cumulative LY379268 dose was as follows: 1.0±3.0
(0.3mg/kg); 0.0±0.0 (1mg/kg); 1.0±3.0 (3mg/kg); 2.1±6.0
(10mg/kg). Furthermore, LY379268 also did not alter
response rate (p¼ 0.883; one-way RM ANOVA). Mean
(±SEM) response rate (total responses/min) at each
cumulative LY379268 dose was as follows: 56.0±9.7
(0.3mg/kg); 53.2±10.9 (1mg/kg); 54.1±15.8 (3mg/kg);
51.7±14.7 (10mg/kg). These data show that LY379268 does
not produce alcohol (1 g/kg)-like stimulus effects.

Effects of Systemic mGlu2/3 receptor activation on the
discriminative stimulus effects of alcohol. The next
experiment was conducted to assess the role of mGlu2/3
receptor activation in modulating the discriminative
stimulus properties of alcohol. A significant main effect of
alcohol dose (F(3,27)¼ 60.62, po0.001), and a significant
interaction (F(6,50)¼ 2.41, p¼ 0.04) were observed. A main
effect of LY379268 dose was not found (p¼ 0.31). Post hoc
comparisons showed a significant reduction in alcohol-
appropriate responding by LY379268 (1 and 3mg/kg, i.p.) at
1.0 g/kg alcohol (po0.001), suggesting that mGlu2/3 re-
ceptor activation blunted the interoceptive effects of the
alcohol training dose (Figure 2a). Overall, LY379268 altered
response rate as evidenced by a significant main effect of
LY379268 dose (F(2,18)¼ 5.48, p¼ 0.01); however, none of
the doses differed from vehicle, suggesting that the
reduction in alcohol-appropriate responding (at 1 g/kg
alcohol) was not due to nonspecific alterations in response
rate. There was also a significant main effect of alcohol dose
(F(3,27)¼ 3.406, p¼ 0.032). These main effects were likely
driven by general reductions in response rate at the highest
LY379268 and alcohol dose (3mg/kg LY379268 + 1.7 g/kg

Figure 1 Confirmation of discriminative stimulus control by alcohol in
Long-Evans rats. (a) Responding on the alcohol-appropriate lever during
generation of an alcohol substitution curve was significantly increased with
each cumulative alcohol dose (n¼ 22), demonstrating that the training
procedures established reliable stimulus control. (b) Response rates
remained unchanged. Horizontal dashed lines (480%) lines denote full
substitution for the discriminative stimulus effects of alcohol. Graphed
values are expressed as mean±SEM. *po0.05 vs 0.1mg/kg alcohol
(Tukey post hoc).

Figure 2 Systemic mGlu2/3 receptor activation by the selective
agonist, LY379268, blunts the discriminative stimulus properties of alcohol.
(a) Examination of mGlu2/3 receptor modulation of the discriminative
stimulus effects of alcohol showed significant decreases in alcohol-
appropriate responding after treatment with LY379268 (1 and 3mg/kg,
i.p.; n¼ 10) at a cumulative alcohol dose of 1 g/kg. Note: 7 of the 10 rats
responded when given a combination of the highest dose of alcohol (1.7 g/
kg) and the highest dose of LY379268 (3mg/kg). (b) Response rate was
not significantly decreased by LY379268. These data suggest that activity at
mGlu2/3 receptors has a role in modulating the discriminative stimulus
properties of alcohol. Horizontal dashed lines (480%) lines denote full
substitution for the discriminative stimulus effects of alcohol. Graphed
values are expressed as mean±SEM. *po0.05 vs vehicle (Tukey post hoc).
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alcohol), as 3 of the 10 rats did not respond; however, a
significant interaction was not observed (Figure 2b).

Examination of c-Fos IR in the Amygdala and Nucleus
Accumbens

Manipulation of metabotropic glutamate receptors has been
associated with altered expression of c-Fos (Kaatz and
Albin, 1995; Kearney et al, 1997; Zhao et al, 2006; Besheer
et al, 2009), a member of a family of immediate early gene
transcription factors that is commonly used as a biomarker
for mapping neuronal activity (Besheer et al, 2008; Cole
et al, 1989; Morgan et al, 1987; Olive et al, 2001).
Furthermore, the nucleus accumbens and the amygdala

are critically involved in modulating the discriminative
stimulus effects of alcohol (Hodge and Aiken, 1996; Hodge
and Cox, 1998; Besheer et al, 2003). Therefore, we sought to
determine whether the activation of mGlu2/3 receptors is
associated with changes in neuronal activity within these
regions. Using c-Fos as a marker for neuronal activity, we
assessed c-Fos-IR after systemic administration of
LY379268. Pretreatment with LY379268 (3mg/kg, i.p.)
produced significant increases in c-Fos IR (positive
pixels/mm2) in the BLA (Figure 3a, b and c; p¼ 0.035),
CeA (Figure 3d, e and f; p¼ 0.014), and LaDL (Figure 3g, h
and i; p¼ 0.028). Interestingly, c-Fos-IR in the core and
shell of the nucleus accumbens was not significantly altered
by LY379268 (Figure 3j, k and l; core (p¼ 0.875), shell

Figure 3 Systemic mGlu2/3 receptor activation increases neuronal activity in specific nuclei of the amygdala. Using c-Fos as a marker for neuronal activity,
we examined whether systemic mGlu2/3 receptor activation was associated with activity in limbic brain regions known to mediate the discriminative stimulus
effects of alcohol (n¼ 5/group). (a, b, and c) The BLA, (d, e, and f) CeA, (g, h, and i) and LaDL nuclei of the amygdala showed significant increases c-Fos-IR,
suggesting an increase in neural activity after treatment with LY379268. In contrast, (j, k, and l) the nucleus accumbens core and shell were not significantly
altered by LY379268 (3mg/kg, i.p.) treatment as measured by c-Fos IR. These data suggest that mGlu2/3 receptor-mediated activity within the amygdala may
be contributing to modulation of the discriminative stimulus effects of alcohol. Representative photomicrographs (� 10) are of c-Fos-IR after i.p. vehicle
(Veh) or LY379268 (LY) administration. Graphed values are expressed as mean±SEM. *po0.05 vs vehicle (t-test).
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(p¼ 0.245)). These data suggest that the activation of
mGlu2/3 receptors is associated with increased neuronal
activity within the amygdala but not the nucleus accum-
bens, and this increased activity may contribute to mGlu2/3
receptor modulation of the discriminative stimulus effects
of alcohol.

Effects of Intra-Amygdala and Intra-Accumbens
mGlu2/3 Receptor Activation on the Discriminative
Stimulus Effects of Alcohol

Using data observed in the c-Fos IR experiment as a guide
for neuroanatomical selectivity, cannulae were implanted in
the amygdala and nucleus accumbens (anatomical control)
for site-specific microinjection of LY379268 to examine
functional and neuroanatomical specificity of mGlu2/3
receptor modulation of the discriminative stimulus effects
of alcohol. Intra-amygdala LY379268 (6 mg) produced a
significant reduction in alcohol-appropriate responding
relative to vehicle treatment (Figure 4a; F(3,25)¼ 4.761,
p¼ 0.009), and did not alter response rate (Figure 4b;
p¼ 0.273). Figure 4c illustrates approximate amygdala
cannulae placement. In contrast, intra-accumbens infusion
of LY379268 (0–3 mg/0.5 ml/side) did not significantly alter
alcohol-appropriate responding (Figure 4d; p¼ 0.182). It

should be noted that only one of the nine rats responded on
the alcohol-appropriate lever when the 3 mg dose of
LY379268 was microinjected into the accumbens, therefore,
there is only one value represented for that data point.
Accordingly, LY379268 significantly reduced the response
rate (Figure 4e; F(3,23)¼ 10.881, po0.001), with significant
reductions observed at the highest dose (3 mg) relative to
vehicle (po0.001). Figure 4f illustrates approximate nucleus
accumbens cannulae placement. These data suggest that
activation of mGlu2/3 receptors in the amygdala, but
perhaps not the nucleus accumbens, inhibits the discrimi-
native stimulus effects of alcohol. In addition, these two
brain regions show differential sensitivity to the motor
impairing effects of LY379268.

DISCUSSION

These results show for the first time that the group II
metabotropic glutamate receptors have a functional role in
modulating the discriminative stimulus properties of
alcohol. First, we show that systemic mGlu2/3 receptor
activation by LY379268 does not produce alcohol-like
stimulus effects. Second, systemic LY379268 administration
reduced alcohol-appropriate responding, suggesting a
blunting of the interoceptive effects of alcohol following

Figure 4 Activation of mGlu2/3 receptors in the amygdala, but not the nucleus accumbens, blunts the discriminative stimulus effects of alcohol. LY379268
was directly microinjected into the amygdala and nucleus accumbens before discrimination testing to directly test the functional role of site-specific mGlu2/3
receptor activation on modulating the discriminative stimulus effects of alcohol. (a) Intra-amygdala (n¼ 10) infusion of LY379268 (6 mg) significantly reduced
alcohol-appropriate responding, (b) but did not alter response rate, suggesting that the amygdala is a key neuroanatomical structure for mGlu2/3 receptor
regulation of the discriminative stimulus properties of alcohol. (c) Representative photomicrograph and illustrations of verified cannulae placements in
the amygdala. (d) Contrastingly, intra-accumbens infusion of LY379268 (0–3mg; n¼ 9) did not significantly alter alcohol-appropriate responding. Note: only 1
of 9 rats responded on the alcohol-appropriate lever at the highest tested dose in the nucleus accumbens (3 mg); (e) a dose that significantly reduced
response rate suggesting that mGlu2/3 receptors in the amygdala but not the nucleus accumbens inhibited the discriminative stimulus effects of alcohol.
(f) Representative photomicrograph and Illustrations of verified cannulae placements in the nucleus accumbens. Horizontal dashed lines (480%) lines
denote full substitution for the discriminative stimulus effects of alcohol. Graphed values are expressed as mean±SEM. *po0.05 vs vehicle (Tukey post hoc).
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mGlu2/3 receptor activation. Further, systemic mGlu2/3
receptor activation increased neuronal activity within the
amygdala, and not the nucleus accumbens, as measured by
c-Fos IR. These findings led us to target mGlu2/3 receptors
in the amygdala to determine functional involvement of
these receptors in the expression of the discriminative
stimulus effects of alcohol. Accordingly, activation of
mGlu2/3 receptors by site-specific microinjections of
LY379268 in the amygdala reduced alcohol-appropriate
responding, confirming functional neuroanatomical control
over the discriminative stimulus properties of alcohol. In
contrast, intra-accumbens mGlu2/3 receptor activation
(anatomical control) did not significantly alter the dis-
criminative stimulus effects of alcohol, but produced a
dramatic reduction in response rate (ie, motor impairment)
at the highest tested dose. In summary, these data suggest
that the amygdala may be a key target region in mGlu2/3
receptor modulation of the interoceptive effects of alcohol
and may be important for the development of mGlu2/3
receptor pharmacotherapeutics for alcohol use disorders.
This study is the first to show that systemic activation of

mGlu2/3 receptors does not generalize to the stimulus
effects of alcohol, which is consistent with past studies that
examined the role of Group I mGlu receptors in modulating
the discriminative stimulus effects of alcohol (Besheer and
Hodge, 2005; Besheer et al, 2009). These findings are
somewhat surprising because of the fact that most
compounds that reduce excitatory neurotransmission (ie,
NMDA antagonists, GABAA agonists) typically substitute
for investigator and/or self-administered alcohol in dis-
crimination tasks (Grant and Colombo, 1993; Hodge and
Aiken, 1996; Hodge and Cox, 1998; Besheer et al, 2003;
Shelton, 2004; Besheer and Hodge, 2005). The difference in
the lack of substitution for alcohol may be attributable to
interactions between alcohol and the different receptor
subtypes. Alcohol alters NMDA and GABAA receptor
function through direct interaction with these fast action
ion channel receptors (Majewska, 1988; Dildy and Leslie,
1989; Weight et al, 1991; Sapp and Yeh, 1998; Criswell et al,
2003). In contrast, mGlu receptors signal through slower
intricate G-protein signaling cascades that are well char-
acterized for their relatively modest role in modulating
excitatory neurotransmission (Ferraguti and Shigemoto,
2006), allowing for modulation of alcohol effects without
generalizing to the stimulus effects of alcohol. Future
experimentation examining the role of other mGlu receptor
subtypes in alcohol discrimination will be required to
validate this hypothesis. It could also be argued that the
LY379268 doses tested were not high enough to elicit
alcohol-like stimulus effects because there were no changes
in behavior observed across tested doses. Indeed, the
highest dose did not significantly alter response rate
(Figure 2b), but acute doses of LY379268 higher than
10mg/kg produce profound motor impairing effects
(Cartmell et al, 2000) and may have nonspecific actions at
other receptors (Monn et al, 1999; Seeman and Guan, 2008;
but see Fell et al, 2009; Zysk et al, 2011), which would
potentially complicate the interpretation of results; there-
fore, higher doses were not tested in this study.
By contrast, when tested in combination with alcohol,

systemic administration of LY379268 significantly reduced
alcohol-appropriate responding by nearly 50% without

altering the rate of responding, suggesting that activation
of mGlu2/3 receptors blunts the interoceptive effects of
alcohol. Several studies have shown that systemic admin-
istration of mGlu2/3 receptor agonists reduce the reinfor-
cing effects of alcohol and relapse-like behavior in rodents
(Backstrom and Hyytia, 2005; Rodd et al, 2006; Sidhpura
and Weiss, 2010). This study presents a possible behavioral
mechanism that may account, in part, for the efficacy of
such compounds in modifying alcohol-drinking behaviors
in animal models. That is, reported reductions in alcohol
self-administration may be related to alterations in the
interoceptive effects of the self-administered/consumed
alcohol. It will be interesting for future experiments to
directly address this possibility. Interestingly, systemic
LY379268 did not reduce alcohol-appropriate responding
at a 1.7 g/kg dose of alcohol. Alcohol has actions at multiple
cellular and molecular targets (Vengeliene et al, 2008),
therefore, it is possible that a higher dose of alcohol may
further stimulate other receptor or signaling systems,
thereby reducing the efficacy of mGlu2/3 receptor activation
in blunting the discriminative stimulus effects of a higher
dose of alcohol (Grant, 1999). Further, given that these
animals had considerable exposure to the alcohol-training
dose (1 g/kg), exposure to higher alcohol doses could
produce stronger stimulus effects that are more difficult
to alter with pharmacological manipulation. Future studies
using a higher alcohol-training dose (ie, 2 g/kg) may reveal
differences in mGlu2/3 receptor modulation across different
alcohol doses.
In an effort to identify neuroanatomical involvement of

mGlu2/3 receptors in modulating the interoceptive effects of
alcohol, we assessed IR of the early immediate gene
transcription factor, c-Fos, as an index of neuronal activity
to examine response of limbic brain regions following
mGlu2/3 receptor agonist administration. Our focus was on
the nucleus accumbens and amygdala given that these are
two primary regions known to regulate the discriminative
stimulus effects of alcohol (Hodge and Aiken, 1996; Hodge
and Cox, 1998; Hodge et al, 2001; Besheer et al, 2003). We
showed that systemic LY379268 pretreatment increased
c-Fos IR in sub-nuclei of the amygdala, with no change in
neuronal activity in the nucleus accumbens of naive rats.
These findings are consistent with those of Zhao et al.
(2006) after systemic administration of LY379268 in Wistar
rats. The observation of increased c-Fos IR after systemic
administration seems paradoxical given that a compound
that reduces overall glutamate activity and cellular excit-
ability, such as LY379268, would be predicted to decrease
neuronal activity. These data suggest that LY379268 may be
acting through a postsynaptic mechanism or by interacting
with GABA neurons to induce changes in neuronal activity.
As such, an explanation for our findings of increased c-Fos
IR in the amygdala following systemic LY379268 adminis-
tration is that mGlu2/3 receptor activation may be altering
neuronal activity through a postsynaptic mechanism,
whereby activation of postsynaptic mGlu2/3 receptors
reduces excitatory neurotransmission. Alternatively,
LY379268 could be inducing disinhibition (or reducing
GABA inhibition) by reducing glutamate release into
synapses that signal through a network of GABAergic
interneurons that regulate excitatory neurotransmission
within the amygdala. Indeed, systemic administration of a
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structurally similar mGlu2/3 receptor agonist (LY354740)
has been shown to induce c-Fos expression in GABAergic
neurons (Swanson et al, 2005). Whether the two mGlu2/3
receptor subtypes differentially mediate cellular excitability
among different neuronal cell types has yet to be
investigated. Regardless of the underlying mechanism, our
finding demonstrates that sub-nuclei of the amygdala show
a response to mGlu2/3 receptor activation, and also suggests
a possible anatomical target for the modulatory effects of
mGlu2/3 receptor activation on the expression of the
discriminative stimulus effects of alcohol.
Functional involvement of intra-amygdala mGlu2/3 re-

ceptors was confirmed as activation of these receptors
inhibited expression of the discriminative stimulus effects
of alcohol (1 g/kg). Interestingly, mGlu2/3 receptor activa-
tion in the nucleus accumbens did not alter alcohol-
appropriate responding, except at a dose that produced a
profound reduction in response rate (see later). This
functional brain regional dissociation is reflected in the
c-Fos-IR findings, in which systemic LY379268 treatment
increased neuronal activity in the amygdala but not the
nucleus accumbens. This data pattern suggests that
amygdala-specific activation of mGlu2/3 receptors reduces
sensitivity to the interoceptive cues of alcohol. An explana-
tion for this reduction in sensitivity is that intra-amygdala
mGlu2/3 receptor activation resulted in excitation (as
discussed above) that blunted the interoceptive effects of
the alcohol or interacted with the alcohol to make it less
‘alcohol-like’. This could also explain the reduction in
alcohol-appropriate responding following systemic
LY379268 administration, and is consistent with c-Fos
activation in the amygdala. Further, the reductions in
alcohol-appropriate responding following systemic admin-
istration may be modulated, at least in part, by mGlu2/3
receptors in the amygdala given the similar data pattern
after mGlu2/3 receptors administration directly into this
region, and not the nucleus accumbens. It is interesting that
the highest dose of LY379268 (6 mg) was necessary to reduce
alcohol-appropriate responding. This dose is indeed higher
than that previously reported in microinjection studies
using LY379268 (Besheer et al, 2010; Uejima et al, 2007). It
may be that repeated alcohol exposure, as used in the
present study, induces changes in mGlu2/3 receptor density
particularly within the amygdala, thus requiring a higher
dose of the agonist to alter behavior. Alternatively, this high
localized dose of LY379268 may have had off-target actions
at other receptors such as dopamine (D2) receptors
(Seeman and Guan, 2008; but see Fell et al, 2009).
An alternative explanation to decreased sensitivity to the

interoceptive effects of alcohol is that mGlu2/3 receptor
activation interfered with the expression of the learned
association. That is, the interoceptive effects of alcohol serve
as a discriminative stimulus when the animal has learned
that the drug state sets the occasion on which responses on
a specific lever are reinforced. Therefore, mGlu2/3 receptor
activation may have interfered with the expression of the
learned association in the amygdala, but not the nucleus
accumbens. Indeed, the amygdala has been well character-
ized for its role in conditioned associations (Gallagher and
Holland, 1994; LeDoux, 2003; Maren, 2005; Zimmerman
et al, 2007), and mounting evidence suggests that this
region has an important role in modulating associations

between drugs of abuse and stimuli such as internal or
environmental cues (Schroeder et al, 2008; See et al, 2003;
Theberge et al, 2010). It will be interesting for future
experiments to examine the expression and function of
mGlu2/3 receptors in the amygdala during different stages
of discrimination learning (ie, acquisition vs maintenance)
to determine whether learning the discrimination induces
changes in mGlu2/3 receptors.
In addition to differential brain regional c-Fos response to

mGlu2/3 receptor activation, and functional involvement in
the expression of the discriminative stimulus effects of
alcohol, the amygdala, and nucleus accumbens also
demonstrated differential sensitivity to the motor impairing
effects of LY379268. That is, a lower LY379268 dose (3 mg)
caused profound reductions in response rate when injected
into the nucleus accumbens, whereas the amygdala was
relatively insensitive to motor impairing effects as a twofold
higher dose (6 mg) did not alter response rate. Previous
work has shown motor-impairing effects after systemic
mGlu2/3 receptor agonist administration (Cartmell et al,
2000; Winter et al, 2004; Backstrom and Hyytia, 2005) and
intra-accumbens administration (Besheer et al, 2010).
Taken together, these data suggest that the nucleus
accumbens may have a contributing role in the reported
motor impairing effects induced by mGlu2/3 receptor
agonists. Interestingly, in this study, systemically adminis-
tered LY379268 did not alter response rate or c-Fos IR when
administered alone. These results are in contrast to the
significant motor impairment evident following intra-
accumbens administration of LY379268, suggesting disso-
ciation between global glutamatergic pathways or neural
circuits that may be affected following systemically and
those specifically altered following intra-accumbens admin-
istration of the mGlu2/3 receptor agonist. In addition, this
differential sensitivity to the motor impairment following
systemic and local administration of LY379268 and that of
the nucleus accumbens and the amygdala may be attribu-
table to reduced activity from nucleus accumbens efferent
projections to the globus pallidus, a key neuroanatomical
structure for coordinated locomotor function (Mogenson
et al, 1983).
This study shows that the interoceptive effects of a

moderate alcohol dose are blunted by activation of mGlu2/3
receptors in the amygdala and that mGlu2/3 receptor
activation does not produce alcohol-like effects. Although
the specific interaction between interoceptive effects/sub-
jective effects of drugs to reinforcement processes is not yet
known, it is interesting to note that mGlu2/3 receptor
activation reduces alcohol self-administration (Backstrom
and Hyytia, 2005). The lack of substitution for alcohol
following mGlu2/3 receptor activation in our study suggests
that reported reductions in self-administration are likely
not due to the agonist producing alcohol-like effects, and
the possibility exists that mGlu2/3 receptor activation
may blunt the interoceptive effects of the consumed
alcohol. Interestingly, previous work has shown no specific
changes in alcohol self-administration behavior following
mGlu2/3 receptor activation in the nucleus accumbens
(Besheer et al, 2010). This is consistent with findings in
this work showing lack of intra-accumbens involvement
of mGlu2/3 receptors in modulating the interoceptive effects
of alcohol.
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To date, activation of mGlu2/3 receptors has been shown
to reduce drug self-administration, relapse to drug-seeking,
as well as inhibit the discriminative stimulus effects of PCP,
and LSD (Baptista et al, 2004; Winter et al, 2004; Bossert
et al, 2006; Peters and Kalivas, 2006; Lu et al, 2007; Hao
et al, 2010; Jin et al, 2010), and as demonstrated by this
work, alcohol. As such, mGlu2/3 receptors may be an
efficacious target for the development of therapeutics for
the treatment of addiction (Kenny and Markou, 2004;
Heidbreder and Hagan, 2005). Moreover, mGlu2/3 receptor
agonists are also generating interest for their potential role
in treating multiple psychiatric disorders (Imre, 2007; Patil
et al, 2007; Yasuhara and Chaki, 2010), such as depression
and anxiety; two disorders that are often co-morbidly
expressed in alcoholics (Schuckit and Hesselbrock, 1994;
Hasin et al, 2005). In addition, delineating the specific role
of each receptor subtype (2 and 3, separately) would be
advantageous for drug development, and with the recent
emergence of selective mGlu2 and mGlu3 receptor positive
modulators, future work may provide some additional
insight to the contributions of activity at mGlu2 or 3
receptors in modulating the discriminative stimulus effects
of alcohol and reinforcement processes.
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