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Drugs of abuse usurp the mechanisms underlying synaptic plasticity in areas of the brain, a process that may contribute to the

development of addiction. We previously reported that GABAergic synapses onto dopaminergic neurons in the ventral tegmental area

(VTA) exhibit long-term potentiation (LTPGABA) blocked by in vivo exposure to morphine. The presynaptically maintained LTP requires

the retrogradely released nitric oxide (NO) to activate a presynaptic cGMP signaling cascade. Previous work reported that inhibitory

GABAA receptor synapses in the VTA are also potentiated by cAMP. Here, we explored the interactions between cGMP-dependent

(PKG) and cAMP-dependent (PKA) protein kinases in the regulation of these GABAergic synapses and LTPGABA. Activation of PKG was

required for NO–cGMP signaling and was also essential for the induction of synaptically elicited LTPGABA, but not for its maintenance.

Synapses containing GABAA receptors were potentiated by NO–cGMP signaling, whereas synapses containing GABAB receptors on the

same cells were not potentiated. Moreover, although the cAMP–PKA system potentiated GABAA synapses, synaptically induced

LTPGABA was independent of PKA activation. Surprisingly, however, raising cGMP levels saturated potentiation of these synapses,

precluding further potentiation by cAMP and suggesting a convergent end point for both signaling pathways in the regulation of

GABAergic release. We further found that persistent GABAergic synaptic modifications observed with in vivo morphine did not involve

the presynaptic cAMP–PKA cascade. Taken together, our data suggest a synapse-specific role for NO–cGMP–PKG signaling pathway in

opioid-induced plasticity of VTA GABAA synapses.
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INTRODUCTION

Long-term potentiation (LTP) and long-term depression
(LTD) are long-lasting synaptic modifications proposed to
underlie many examples of experience-dependent plasticity
(Malenka and Bear, 2004). Over the last decade, rapid, drug-
induced synaptic plasticity has been reported at excitatory
glutamatergic synapses in addiction-related brain circuits,
suggesting that LTP- and LTD-like changes may also
contribute to the development of addiction (Ungless et al,
2001; Hyman et al, 2006; Kauer and Malenka, 2007). Recent
evidence suggests that drug-induced plasticity of ventral
tegmental area (VTA) GABAergic synapses may also
contribute to the development of addictive behaviors
(Mansvelder et al, 2002; Melis et al, 2002; Liu et al, 2005;
Nugent et al, 2007; Nugent and Kauer, 2008; Pan et al,
2008).
Opioids rapidly increase VTA dopamine (DA) cell firing

and output through disinhibition, that is, by reducing the

tonic inhibition provided by local interneurons (Johnson
and North, 1992). Recently, we reported that 24 h after in
vivo morphine exposure nitric oxide (NO)-dependent
LTPGABA is blocked, providing a long-lasting mechanism
by which opioids can enhance the excitability of DA
neurons and may contribute to the reinforcing effects of
opioids. LTPGABA is heterosynaptic, initiated by glutamate
release onto NMDA receptors on the postsynaptic DA
neuron. Activation of NO synthase by intracellular Ca2+

generates NO, which then travels retrogradely to activate
soluble guanylate cyclase (sGC) in neighboring presynaptic
GABAergic nerve terminals. Increased levels of cGMP,
presumably acting in presynaptic terminals, promote long-
lasting potentiation of GABA release at these synapses
(Nugent et al, 2007). In the context of opiate addiction, it is
important to further investigate the precise cellular
mechanisms underlying LTPGABA.
Cyclic GMP-dependent protein kinase (PKG) is present in

neurons throughout the brain, and is a major target of NO–
cGMP signaling (el-Husseini et al, 1995; Wang and
Robinson, 1997). PKG has previously been implicated in
the induction and maintenance of synaptic plasticity (Zhuo
et al, 1994; Wu et al, 1998; Lu et al, 1999; Santschi et al,
1999; Lu and Hawkins, 2002; Monfort et al, 2002, 2004;
Chien et al, 2003; Liu et al, 2003). The cAMP–PKA signaling
pathway also regulates synaptic plasticity in many brain
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regions (Huang and Kandel, 1994, 1998; Weisskopf et al,
1994; Salin et al, 1996a, b; Castro-Alamancos and Calcag-
notto, 1999; Linden and Ahn, 1999; Mellor et al, 2002).
Several studies have implicated cAMP–PKA signaling in
responses to drugs of abuse. Following acute withdrawal
from chronic morphine, cyclic AMP-dependent increases in
GABA release in different regions, including the VTA, have
been reported (Bonci and Williams, 1997; Chieng and
Williams, 1998; Ingram et al, 1998). Furthermore, Melis et al
(2002) reported that cAMP–PKA signaling is required for
induction of a long-lasting potentiation of VTA GABAergic
synapses after a single exposure to ethanol. Given that
opioids can modulate the release of GABA through an
interaction with the presynaptic cAMP cascade (Williams
et al, 2001), here we have investigated the roles of PKG and
PKA as likely downstream targets for cGMP and cAMP in
LTPGABA.

MATERIALS AND METHODS

Preparation of Brain Slices

Preparation of slices was as described previously (Jones
et al, 2000; Nugent et al, 2007). Sprague–Dawley rats (15–21
days old) were deeply anesthetized using isoflurane and
quickly decapitated in accordance with the Brown Uni-
versity Institutional Animal Care and Use Committee
guidelines. The brain was rapidly removed into ice-cold
artificial cerebrospinal fluid (ACSF) containing (in mM):
126 NaCl, 21.4 NaHCO3, 2.5 KCl, 1.2 NaH2PO4, 2.4 CaCl2, 1.2
MgSO4, 11.1 glucose, 0.4 ascorbic acid, saturated with 95%
O2/5% CO2 (pH 7.4). Horizontal midbrain slices containing
the VTA (250 mm thick) were cut using a vibratome, stored
for at least 1 h at 351C, and transferred to a recording
chamber where the slice was submerged in warmed ACSF.

Electrophysiology

Midbrain slices were continuously perfused with ACSF (no
ascorbic acid) at 28–321C at 2–4ml/min. To study GABAA

receptor-mediated synaptic transmission, 6,7-dinitroquinoxa-
line-2,3-dione (DNQX;10mM), strychnine (1mM), and 1,3-
dipropyl-8-cyclopentylxanthine (DPCPX; 1mM) were added
to block AMPA-, glycine-, and A1 adenosine receptors,
respectively. To isolate GABAB receptor-mediated IPSCs, the
superfusion medium contained 2-amino-5-phosphonopenta-
noic acid (AP-5; 100mM), DNQX (10mM), picrotoxin
(100mM), strychnine (1mM), eticlopride (1mM) and 7-
hydroxyiminocyclopropan [b] chromen-1a-carboxylic acid
ethyl ester (CPCCOEt; 50mM) to block NMDA, AMPA,
GABAA, glycine, D2-, and mGluR1 receptors, respectively.
The GABABR IPSCs were entirely blocked by the GABAB

receptor antagonist CGP55845 (10mM). Patch pipettes were
filled with (in mM): 125 KCl, 2.8 NaCl, 2 MgCl2, 2 ATP-Na+,
0.3 GTP-Li+ , 0.6 EGTA, and 10 HEPES. To record GABAAR-
mediated IPSCs, cells were voltage-clamped at �70mV except
during HFS, and the cell input resistance and series resistance
were monitored throughout the experiment; experiments
were discarded if these values changed by more than 10%
during the experiment. GABABR IPSCs were recorded from
cells voltage-clamped at –50mV (see below).

If the steady-state h-current was greater than 60 pA
during a step from �50 to �100mV, the neuron was
considered a DA neuron. A recent study showed that
expression of Ih alone is not sufficient to identify DA cells
unequivocally (Margolis et al, 2006, but see the review by
Chen et al, 2008). Therefore in each set of our experiments,
a subset of the neurons recorded from and reported here are
possibly non-dopaminergic neurons.
GABAAR-mediated IPSCs were stimulated at 0.1 Hz

(100 ms) using a bipolar stainless steel stimulating electrode
placed 200–500 mm rostral to the recording site in the VTA.
GABABR-mediated IPSCs were stimulated using a train of
stimuli; 10 pulses of 250 ms at 66Hz, repeated once every
60 s (Bonci and Williams, 1996; Fiorillo and Williams, 2000).
LTPGABA was induced by stimulating afferents at 100Hz for
1 s, the train was repeated twice 20 s apart (high-frequency
stimulation; HFS). Just before HFS, the recorded neuron
was taken from voltage-clamp and into bridge mode, so that
the HFS trains were delivered with the membrane potential
free to vary.

Statistics

Data are presented as means±SEM. Significance was
determined using a Student’s unpaired t-test with signifi-
cance level of po0.05. Levels of LTP are reported as
averaged IPSC amplitudes for 5min just before LTP
induction compared with averaged IPSC amplitudes during
the 5min period from 15 to 20min after HFS using a
Student’s paired t-test. Paired-pulse ratios (50ms inter-
stimulus interval) were measured over 5min epochs of 30
IPSCs each as previously described (Nugent et al, 2007).

Drug Application

Drugs were bath-applied at known concentrations for at
least 15min before HFS. Control experiments were inter-
leaved with experiments in which drugs were bath-applied.
To assess drug effects, IPSC amplitudes were averaged for
5min during the peak response and were compared with
5min of averaged data before drug application. Salts and all
other drugs were obtained from Sigma-Research Biochemi-
cals International or Tocris Bioscience, except for KT5823,
obtained from Calbiochem.

Treatment with Morphine

Rats (15–21 days old) were maintained on a 12-h light/dark
cycle and provided food and water ad libitum. They were
injected intraperitoneally with either 10mg/kg morphine or
a comparable volume of saline, placed in a new cage for 2 h,
and then returned to the home cage. They were killed for
brain slice preparation 24 h after injection.

RESULTS

As we reported previously (Nugent et al, 2007, 2008),
GABAergic synapses on VTA DA neurons undergo LTP in
response to patterned local electrical stimulation (LTPGABA,
Figure 1a). LTPGABA appears to be expressed by an increase
in presynaptically released GABA, as the paired-pulse ratio
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and coefficient of variation change after induction (Nugent
et al, 2007).

NO is not Needed to Sustain LTPGABA

Sustained activity of protein kinases, such as protein kinase
C (PKC) and calcium calmodulin kinase type II (CaMKII),
have been proposed to be involved in the maintenance and
expression of LTP (Lisman, 1985; Lisman and Goldring,
1988; Malinow et al, 1988; Chen et al, 2001; Yang et al,
2004). In VTA DA cells, the production of presynaptic
cGMP in response to NO release triggers LTPGABA. We first
asked whether constitutive release of NO is necessary to
sustain LTPGABA, or whether instead, a brief exposure is
sufficient to persistently enhance GABA release. Consistent
with our previous results, the NO donor, SNAP (S-nitroso-

N-acetylpenicillamine; 200–400 mM), potentiated GABAAR
IPSCs, resembling LTPGABA (Figure 1b and c). Yet we
observed that when the NO scavenger, PTIO (2-phenyl-
4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide, 300 mM), was
added after the NO donor elicited synaptic potentiation, the
SNAP-induced potentiation did not decay back to control
values (Figure 1b and c). The inability of PTIO to reverse
the potentiation strongly suggests that the maintenance of
LTPGABA does not require the persistent presence of NO.

The NO–cGMP Signaling Cascade Activates PKG to
Potentiate GABAergic Synapses

Consistent with our previous findings, the cGMP analog,
pCPT-cGMP (8-(p-chlorophenylthio)-cGMP; 100 mM),
potentiated GABAergic IPSCs (Figure 2a) suggesting that
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Figure 1 Nitric oxide (NO) is not necessary for the maintenance of LTPGABA. (a) Average of 26 experiments showing LTPGABA recorded from dopamine
cells. HFS was delivered at the arrow. LTPGABA: 181±1% of pre-HFS values, n¼ 26. Inset: averaged IPSCs before and 25min after HFS from single
experiment. In this and all figures, 10 consecutive IPSCs from each condition were averaged for illustration. Calibration for insets: 10ms, 100 pA. (b) Single
experiment illustrating the lack of effect of the NO scavenger, PTIO, on SNAP-induced potentiation of GABAergic IPSCs. SNAP (400mM), an NO donor,
potentiated IPSCs. After a new stable level was reached, PTIO (300mM) was bath-applied, but did not reverse the potentiation induced by SNAP. Inset:
averaged IPSCs recorded before, after 10min in SNAP and after 10min in PTIO. (c) Average of experiments using the protocol outlined in (b) showing that
after SNAP potentiated the IPSCs (150±4% of pre-SNAP values, n¼ 11), PTIO had no effect on SNAP-induced potentiation (121±8% of pre-PTIO
values, n¼ 11).
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NO-mediated activation of guanylate cyclase is required for
NO to enhance GABA release. Furthermore, pCPT–cGMP is
a selective activator of PKG, with little effect on cyclic
nucleotide-gated ion channels or phosphodiesterases (Wang

and Robinson, 1997). If NO–cGMP signaling must activate
PKG to potentiate GABAergic synapses, then a PKG
inhibitor should prevent the potentiation induced either
by SNAP or pCPT–cGMP. As predicted, KT5823, a selective
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Figure 2 Nitric oxide (NO)–cGMP signaling requires PKG to enhance GABAergic IPSCs. (a) A cGMP analog, pCPT-cGMP (100 mM), potentiates IPSCs
(146±9% of pre-drug values, n¼ 4). Inset: averaged IPSCs recorded during a single such experiment before and after 15min in pCPT–cGMP. Calibration for
all insets: 10ms, 100 pA. (b) The PKG inhibitor, KT5823 (500 nM), blocks the enhancement of IPSCs by 200 mM SNAP (101±6% of pre-SNAP values,
n¼ 4). KT5823 was applied at least 15min before the addition of SNAP. Inset: averaged IPSCs recorded during single experiment in KT5823 and after
15min in SNAP. (c) KT5823 (500 nM) also prevents the potentiation of IPSCs by 100 mM pCPT–cGMP (104±6% of pre-SNAP values, n¼ 6). KT5823 was
applied at least 15min before the addition of pCPT–cGMP. Inset: averaged IPSCs recorded during single experiment in KT5823 and after 15min in pCPT-
cGMP. (d) KT5823 (500 nM) has no effect on basal GABAergic transmission (113±6% of pre-drug values, n¼ 5). Inset: averaged IPSCs recorded during
single experiment before and after 10min in KT5823.
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PKG inhibitor which interferes at the level of the ATP-
binding site of the PKG catalytic domain (Hidaka and
Kobayashi, 1992), prevented the potentiation induced by
either the NO donor (Figure 2b) or the cGMP analog
(Figure 2c). These data support the idea that the sequential
activation of the presynaptic sGC and PKG downstream
from NO promotes GABA release in these synapses. In
addition, KT5823 did not reduce basal synaptic transmis-
sion (Figure 2d), implying that PKG activity is not required
to maintain basal GABA release from these terminals.

Sequential Activation of GC, and then PKG is Necessary
for the Induction of LTPGABA but not for its
Maintenance

We further explored the role of PKG in the induction and
maintenance of LTPGABA in response to HFS. Application of
KT5823 entirely blocked the induction of LTPGABA
(Figure 3a). If persistent PKG activity is also necessary for
the maintenance of LTPGABA, synaptic potentiation should
be reversed if PKG activity is inhibited after induction. To
test this hypothesis, we bath applied KT5823 10min after
induction of LTPGABA using synaptic stimulation (HFS).
KT5823 had no significant effect on the maintenance of
LTPGABA (Figure 3b). Furthermore, after pCPT–cGMP
washout and addition of KT5823, the IPSC amplitude
remained potentiated, confirming that the maintenance of
the potentiation did not require persistent activity of PKG

once the LTP was induced (178±4% of pre-drug values,
n¼ 3). Taken together, these findings suggest that the
induction of LTPGABA requires transient activation of PKG,
but the expression of LTPGABA does not require persistent
activity of this kinase.

GABAB Synapses are not Potentiated in Response to
cGMP

Anatomically and functionally distinct sets of GABAergic
afferents innervate VTA DA neurons at inhibitory synapses
containing either GABAB or GABAA receptors. For example,
GABAergic axons from outside the VTA, such as the nucleus
accumbens or ventral pallidum, target GABABR-containing
synapses, whereas GABAAR-containing synapses most likely
receive their main input from the axons of local GABAergic
interneurons in the VTA (Johnson et al, 1992; Sugita et al,
1992; Cameron and Williams, 1993). As GABAAR LTP is
altered after morphine exposure in vivo, and drugs of abuse
can also influence GABAB receptor synapses, we next asked
whether the NO–cGMP signaling cascade could modulate
GABAB synapses. We evaluated the effects of SNAP and
pCPT–cGMP on GABAB IPSCs recorded from VTA DA
neurons. Unlike GABAA synapses, after bath application of
either the NO donor or the cGMP analog, GABAB synapses
were not potentiated (Figure 4). These findings show that the
molecular machinery for NO–cGMP signaling does not
potentiate all GABA-releasing axons in the VTA, but is
selective for GABAAR-associated synapses, most likely arising
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Figure 3 PKG is required for the induction, but not the maintenance of LTPGABA. (a) Bath application of KT5823 (gray bar, 500 nM) prevents LTPGABA
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from local VTA GABAergic neurons. The NO–cGMP
potentiating mechanism is either absent or non-functional
in the VTA GABAB nerve terminals originating from
GABAergic neurons outside the VTA.

Activation of Adenylyl Cyclase Potentiates GABAA

Synapses and Occludes Further Potentiation by HFS

A rise in presynaptic cAMP following activation of adenylyl
cyclase facilitates neurotransmitter release at many
synapses, and is involved in the induction and expression
of LTP at many excitatory and inhibitory synapses (Briggs
et al, 1988; Greengard et al, 1991; Cameron and Williams,
1993; Chavez-Noriega and Stevens, 1994; Huang and
Kandel, 1994, 1998; Weisskopf et al, 1994; Bonci and
Williams, 1996; Salin et al, 1996a; Bonci and Williams, 1997;
Castro-Alamancos and Calcagnotto, 1999; Linden and Ahn,
1999; Mellor et al, 2002). Furthermore, PKA activation has
previously been shown to potentiate GABAAR synapses on
VTA DA neurons (Melis et al, 2002). Therefore, we explored
the interactions of the cAMP cascade with LTPGABA using
forskolin (10 mM) to activate adenylyl cyclase. We con-
firmed that forskolin enhanced GABAergic responses
(Figure 5a and b) and this enhancement was associated
with a decrease in the paired-pulse ratio, suggesting that it
is likely due to enhanced GABA release, also seen during

LTPGABA (Melis et al, 2002; Nugent et al, 2007). Dideox-
yforskolin, a biologically inactive analog that does not
stimulate adenylyl cyclase, had no effect on GABAA–
mediated responses (Figure 5b). Furthermore, once the
potentiation by forskolin had plateaued, HFS failed to
produce further synaptic potentiation (Figure 5a and c).
Thus, forskolin mimicked and occluded LTPGABA through
the activation of adenylyl cyclase and the subsequent rise in
cAMP. PKA is the major downstream target for cAMP, and
if the activation of PKA mediates synaptic enhancement,
Sp-cAMPS (a cAMP mimic and specific activator of PKA)
should also enhance GABA release. Consistent with this
hypothesis, we found that Sp-cAMPS (20 mM) also poten-
tiated GABAA IPSCs and occluded further potentiation
induced by HFS (Figure 6a–c).

Activation of PKA Through the cAMP Signaling
Pathway is not Necessary for the Induction or
Expression of LTPGABA

Together, these findings indicate that elevation of cAMP or
PKA activation enhances synaptic strength through a
presynaptic mechanism shared by LTPGABA. However, these
experiments do not address whether cAMP/PKA signaling
are required for LTPGABA. To test this idea, a specific PKA
inhibitor, Rp-cAMPS (20 mM) was bath applied before HFS
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and remained throughout the experiment. An even lower
concentration of Rp-cAMPS was sufficient to block PKA in
an earlier study (Gutlerner et al, 2002). The induction and
expression of LTPGABA was entirely unaffected by bath
application of Rp-cAMPS (Figure 6d). These data suggest
that the cAMP–PKA signaling pathway is not required for
LTPGABA but apparently shares downstream mechanisms
with LTPGABA that underlie the long-lasting enhancement of
GABA release from these terminals.

PKG and PKA Signaling Pathways Converge Onto
Common Downstream Mechanisms to Sustain the
Potentiation of GABAergic Synapses

Our data thus far indicate that elevation of either cGMP or
cAMP levels enhances GABA release through the activation of

PKG and PKA, respectively, as shown schematically in
Figure 7a. PKA and PKG share common substrates that
could serve as a mechanism for convergence. If these two
pathways share a common target that promotes persistently
enhanced GABA release, saturation of potentiation induced
by one signaling pathway should preclude further potentia-
tion through the other. To test this idea, we first bath-applied
SNAP to potentiate GABAergic synapses through the NO–
cGMP–PKG pathway. Once the potentiation by SNAP had
plateaued, application of forskolin did not cause further
synaptic potentiation (Figure 7b, c). This finding points to a
convergence point for PKG and PKA in expressing and
sustaining the increased GABA release. However, a trivial
explanation might be that when intracellular levels of cGMP
or cAMP are sufficiently high, there is cross-activation of
kinases by the cyclic nucleotides (Wang and Robinson, 1997).
To rule out this possibility, we examined the effects of
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the HFS-induced potentiation with forskolin (10 mM)-induced potentiation. Inset: averaged GABAA IPSCs recorded during a single experiment before, after
20min in forskolin and 20min after HFS). Calibration: 10ms, 100 pA. (b) Forskolin activated adenylyl cyclase to increase GABAergic transmission, whereas
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forskolin on GABAergic synapses in the persistent presence of
the PKG inhibitor, KT5823. If the increased levels of cAMP
cross-activate PKG (which would subsequently potentiate
these synapses), inhibition of PKG should reduce this

potentiation. In contrast, in the presence of the PKG inhibitor,
forskolin was still able to induce potentiation comparable
with that seen with forskolin alone suggesting that cross talk
between these two pathways cannot explain our results.
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induced potentiation. Sp-cAMPS, a cAMP analog, potentiated GABAA IPSCs and occluded the potentiation induced by HFS. Inset: averaged GABAA IPSCs
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Instead, the simplest explanation of our data is that the two
signaling cascades act on a common target to promote a
sustained enhancement of GABA release. Further confirma-
tion of this interpretation comes from bath-application of
forskolin for only 10min. The potentiation induced by brief
application of forskolin did not require the persistent
activation of PKA and still occluded the further potentiation
by HFS, suggesting that both kinases converge on a down-
stream mechanism that is necessary for LTPGABA (99.5±1%
of pre-HFS values, n¼ 4).

A Single In Vivo Morphine Exposure has no Effect on
the Presynaptic cAMP–PKA Signaling Pathway

Our recent work has shown that in vivo treatment with
morphine persistently modulates GABAergic synaptic
plasticity as a result of interference with presynaptic NO–
cGMP signaling (Nugent et al, 2007). The cAMP–PKA-
dependent potentiation of the same GABAergic synapses is
also reportedly altered 24 h following ethanol exposure
(Melis et al, 2002). m-opioid receptors are negatively
coupled to adenylyl cyclase through Go, and in the VTA,
m-opioid drugs acutely depress GABAergic synaptic trans-
mission (Johnson and North, 1992; Williams et al, 2001;
Nugent et al, 2007). In fact, one of the effectors of opioid
receptor activation to decrease GABA release is also the
inhibition of adenylyl cyclase. On the basis of our present
results, which suggest that cGMP and cAMP signaling
cascades coexist in VTA GABAergic synapses, we tested
whether the interaction of in vivo morphine with cAMP
signaling in presynaptic terminals has the potential to
interfere with synaptic potentiation by the cAMP–PKA
pathway. To address this question, rats were treated either
with morphine (10mg/kg i.p.) or with saline, and 24 h after
treatment, the effects of forskolin (10 mM) were tested on
GABAergic synapses. Synapses from both saline- and
morphine-treated animals were potentiated after exposure
to forskolin (Figure 8a–c), suggesting that the presynaptic
cAMP–PKA pathway is unaltered after morphine exposure,
in contrast to morphine’s effect on the NO–PKG signaling
cascade involved in LTPGABA. This result also confirms that
the site of disruption of the NO signaling by morphine is
upstream to the unidentified converging mechanism for
both PKG and PKA.
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Figure 7 Convergence of the presynaptic NO–cGMP–PKG and cAMP–
PKA signaling pathways on GABA release. (a) Proposed schematic of
signaling molecules mediating the effects of SNAP and forskolin in the
presynaptic GABAergic terminal. (b) Single experiment illustrating the
effect of forskolin added after SNAP potentiated GABAergic IPSCs. After
the IPSCs in SNAP (400mM) reached a stable potentiated level, forskolin
(10 mM) was bath-applied. SNAP occluded the potentiation induced by
forskolin. Inset: averaged IPSCs recorded during a single experiment before,
after 10min in SNAP and after 10min in forskolin. Calibration: 10ms,
100 pA. (c) Average of six experiments using the protocol outlined in (b).
Only the portion of the experiment showing the effect of forskolin on
SNAP-induced potentiation is shown (108±7% of pre-forskolin values,
n¼ 6). (d) The PKG inhibitor, KT5823 (500 nM), does not prevent the
enhancement of IPSCs by 10mM forskolin (187±8% of pre-forskolin
values, n¼ 6), supporting the idea that the effect of forskolin on IPSCs is
not mediated by cross-activation of PKG. KT5823 was applied at least
15min before the addition of forskolin.
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potentiating effect of forskolin (10 mM) on IPSCs from a saline-treated animal. Inset: Averaged GABAA IPSCs recorded before and after 20min in forskolin.
Calibration for insets: 10ms, 100 pA. (b) Single experiment illustrating the effect of forskolin (10 mM) on IPSCs from a morphine-treated animal. Forskolin still
potentiates GABAA-mediated IPSCs. Inset: averaged GABAA IPSCs recorded before and after 20min in forskolin. (c) Averaged experiments showing the
enhancing effect of forskolin on IPSCs in slices from both saline- and morphine-treated animals, showing that morphine in vivo does not alter the effect of
forskolin (saline, filled circles, 188±11% of pre-drug values, n¼ 8; morphine, open circles, 167±15% of pre-drug values, n¼ 10). (d) Proposed model of
signaling molecules involved in opioid-induced plasticity at VTA GABAergic synapses. An in vivo injection of morphine alters GABAergic plasticity through
modulation of the NO signaling pathway, probably at the level of sGC, without affecting the cAMP signaling cascade.
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DISCUSSION

Here we have investigated the involvement of PKG and PKA
in the induction and expression of LTPGABA. Furthermore,
we provide evidence for the synapse-specificity of NO
signaling at VTA GABAA synapses and confirm that in vivo
morphine persistently and specifically modulates the
plasticity of these synapses through an interaction with
the NO signaling pathway without an associated change in
the coexistent cAMP signaling cascade.

The NO–cGMP–PKG and cAMP–PKA Signaling
Cascades Both Potentiate GABAergic Synapses

Increasing levels of NO exogenously using SNAP, or
application of a cGMP analog, pCPT-cGMP, potentiates
GABAergic synapses onto VTA DA neurons. Inhibition of
PKG prevented the potentiation induced by NO or cGMP,
supporting the role of PKG as the downstream effector from
NO–cGMP. However, inhibition of PKG had no effect on
basal GABAergic tone, suggesting that constitutive PKG
activity is not necessary to maintain basal levels of GABA
release.
Cyclic GMP-dependent protein kinase is a serine-

threonine kinase that mediates most of the effects of cGMP.
Two different classes of PKG have been reported, PKG I and
PKG II. Although PKG I is highly localized in cerebellar
Purkinje cells and a few other sites in brain, the ubiquitous
distribution of PKG II and its major localization in neuronal
processes make it a major target in mediating cGMP effects
in the brain (Wang and Robinson, 1997; de Vente et al,
2001; Williams et al, 2001; Jouvert et al, 2004). Given that
pCPT–cGMP is also a specific PKG II activator, PKG II
rather than PKG I is the most likely kinase mediating the
potentiation of VTA GABA release.
Several studies have shown that stimulation of AC by

forskolin increases the release of GABA at VTA GABAergic
synapses (Cameron and Williams, 1993; Bonci and Wil-
liams, 1996, 1997). We also found that either forskolin
treatment or application of a cAMP analog/PKA activator
potentiates the GABAergic synapses. We next asked whether
the PKG and PKA signaling pathways interact with one
another to increase GABA release from these GABAergic
terminals. Potentiation of the synapses by using an NO
donor prevented subsequent potentiation by forskolin, most
likely because these synapses possess the molecular
machinery for both NO–cGMP–PKG and cAMP–PKA
signaling pathways, with both pathways converging on
common downstream effectors to potentiate the GABAergic
synapses. PKA and PKG share common phosphorylation
substrates, and identification of this unknown converging
mechanism in GABAergic release machinery deserves
further study. Alternatively, it is formally possible that
PKG might phosphorylate an unknown cellular target that
could in turn inhibit activation of either AC or PKA.

Synapse Specificity of the NO–cGMP–PKG Signaling to
GABAA Synapses

The NO–cGMP signaling pathway can control GABAergic
synaptic transmission and plasticity at GABAAR synapses
(Stern and Ludwig, 2001; Li et al, 2002; Yu and Eldred,

2005), but many studies also suggest the involvement of
GABABRs in drug addiction-related behaviors (Humeniuk
et al, 1993; Cameron and Williams, 1994; Bonci and
Williams, 1996; Shoji et al, 1997, 1999; Boehm et al, 2002;
Leite-Morris et al, 2004; Ong and Kerr, 2005). Chronic
exposure to either morphine or cocaine modulates GABAB

receptor function (Bonci and Williams, 1996). Moreover,
intra-VTA application of baclofen, a GABAB receptor
agonist, interferes with the rewarding properties of intra-
cranial self-stimulation (Willick and Kokkinidis, 1995), with
self-administration of several addictive drugs including
heroin (Xi and Stein, 1999), with morphine-induced place
preference (Tsuji et al, 1996), and with opioid-induced
motor sensitization (Leite-Morris et al, 2002, 2004). We
therefore next explored the potential presynaptic effects of
NO on synaptic transmission mediated by GABAB receptors
in the VTA. We found, however, that the NO donor or
cGMP analog had no effect on GABAB IPSCs, indicating that
the NO signaling pathway selectively potentiates GABAA

synapses in the VTA. Although the NO–cGMP signaling
pathway did not potentiate GABAB synapses, forskolin
activation of the cAMP–PKA pathway has previously been
shown to increase GABAB IPSPs (Shoji et al, 1999). This
functional selectivity is not entirely surprising given that
distinct sets of GABAergic inputs with distinct character-
istics appear to innervate GABAA and GABAB synapses in
the VTA. Extrinsic GABAergic afferents arising from
forebrain selectively provide synaptic inputs to GABAB

receptors, whereas GABAA responses are thought to arise
from GABA release from local VTA interneurons (Johnson
et al, 1992; Sugita et al, 1992; Shoji et al, 1999). In addition
to the anatomical differences, D1 and 5-HT1A receptors
acting through cAMP–PKA machinery are only expressed
on presynaptic GABAergic terminals synapsing on
GABABRs on DA neurons (Sugita et al, 1992; Cameron
and Williams, 1993, 1994). The synapse specificity of the NO
signaling for GABAA synapses we have observed here
emphasizes the fact that the two GABAergic inputs to these
important DA neurons are quite independent, and modula-
tion or alteration in one will likely spare the other. The
distinct machinery available to modulate GABA release in
distinct cell populations also potentially provides selective
targets for drugs of abuse to exert their modulatory effects
on GABAergic neurotransmission. These differences may
also be exploited by therapeutic agents targeting only a
single type of GABAergic synapse.

PKG but not PKA is Involved in LTPGABA

Raising the levels of either cGMP or cAMP increases
GABAergic transmission at GABAA synapses, which mimics
LTPGABA. Our earlier work showed the role of cGMP in
LTPGABA by ‘occlusion’ experiments in which prior
potentiation induced by a cGMP analog prevented further
HFS-induced LTPGABA, presumably by maximally activating
the release potentiating machinery. Comparable sets of
occlusion experiments were performed here with forskolin
and Sp-cAMPS, and we found no further LTPGABA after
synaptic HFS, again suggesting an interaction of the cAMP
cascade with mechanisms used in LTPGABA. To further
clarify the involvement of PKG and PKA in GABAergic
plasticity, we used compounds that specifically inhibit
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protein kinase activity. Although inhibition of PKG
completely blocked the induction of LTPGABA, the main-
tenance of LTPGABA was unaffected. These results show that
the induction of NO-dependent LTPGABA is dependent on a
rapid activation of PKG; however, the expression and
maintenance of LTPGABA does not require persistent PKG
activity. On the other hand, inhibition of PKA activity had
no effect on the induction or the expression of LTPGABA.
The occlusion between SNAP-induced potentiation and
forskolin-induced potentiation indicates that LTPGABA
requires the NO–cGMP–PKG pathway, and that cAMP–
PKA can potentiate GABAA release by a shared cellular
mechanism. Phosphorylation of presynaptic proteins
provides a potential molecular mechanism to control
transmitter release in a nerve terminal, especially in long-
term processes such as presynaptic plasticity (Ghijsen and
Leenders, 2005). It is also possible that the cAMP–PKA
signaling pathway acts in parallel with PKG to increase
phosphorylation of an unknown downstream target whose
activation is necessary for the expression of LTPGABA. One
possible converging downstream mechanism for both
kinases is RIM1a, an active zone protein and PKA substrate
that is involved in long-term changes in neurotransmitter
release (Castillo et al, 2002; Schoch et al, 2002; Chevaleyre
et al, 2006; Chevaleyre et al, 2007). However, it is not yet
known whether RIM1a is a PKG substrate.

The Presynaptic cAMP–PKA Cascade is not Modulated
by a Single In Vivo Morphine Exposure

We showed previously that a single in vivo exposure to
morphine acts on the NO–cGMP signaling to block LTPGABA
at VTA synapses (Nugent et al, 2007). The m-opioid
receptors are coupled through Go to adenylyl cyclase, which
in theory could represent an additional morphine target
modulated in parallel with the NO–cGMP–PKG signaling
cascade. Potentiation of GABA release after withdrawal
from chronic morphine resulted from an upregulation of
the cAMP–PKA cascade that is sensitive to inhibition by
opioids (Chieng and Williams, 1998; Ingram et al, 1998;
Shoji et al, 1999; Williams et al, 2001). Moreover, GABAA-
mediated synaptic transmission is altered in the VTA by the
cAMP–PKA cascade after a single in vivo exposure to
ethanol, and this alteration is proposed to provide an initial
maladaptive change at the synaptic level (Melis et al, 2002).
However, we found here that increasing cAMP levels in
morphine-treated animals still potentiated the GABAA

synapses. Although in vivo morphine is able to block an
increase in GABA release through the NO–cGMP pathway,
GABA transmission by the cAMP–PKA pathway is still able
to be potentiated 24 h after morphine. These data also
indicate a significant difference between the effects of these
two addictive drugs. After 24 h ethanol exposure, GABAA

synapses are potentiated and cAMP–PKA cascades elicit no
further potentiation (Melis et al, 2002), whereas 24 h after
morphine exposure, the synapses are responsive to
cAMP–PKA. It is possible that in response to the two
drugs, synaptic changes occur on different time scales, so
that an examination of GABAA synapses at different time
points following ethanol or morphine may show conver-
gence over time.

One day after morphine exposure LTPGABA is inhibited,
presumably removing a normal mechanism limiting DA cell
firing rate. This inhibition can be bypassed either by cGMP
analogs or activation of PKG, or alternatively by activation
of the unaffected cAMP–PKA signaling pathway. Our data
therefore suggest that raising cAMP or cGMP levels in
GABAergic terminals may represent a useful therapeutic
strategy to counteract opioid-induced maladaptive changes
at GABAergic synapses. Taken together, these data indicate
the synapse-specific role of NO–cGMP–PKG signaling in
opioid-induced plasticity of GABAergic synapses. Under-
standing the effects of chronic exposure to morphine on the
NO–cGMP–PKG signaling pathway would also provide
insight into how drugs of abuse reshape the reward
circuitry. It is possible that repeated exposure to morphine
would upregulate the cAMP–PKA pathway, while impairing
the NO–cGMP–PKG pathway. It will be of interest to ask
whether this modulation by chronic morphine provides a
form of homeostatic regulation of inhibitory plasticity in
the VTA circuitry during establishment of opiate addiction.
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