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Highly selective positive allosteric modulators (PAMs) of metabotropic glutamate receptor subtype 5 (mGluR5) have emerged as a

potential approach to treat positive symptoms associated with schizophrenia. mGluR5 plays an important role in both long-term

potentiation (LTP) and long-term depression (LTD), suggesting that mGluR5 PAMs may also have utility in improving impaired cognitive

function. However, if mGluR5 PAMs shift the balance of LTP and LTD or induce a state in which afferent activity induces lasting changes

in synaptic function that are not appropriate for a given pattern of activity, this could disrupt rather than enhance cognitive function. We

determined the effect of selective mGluR5 PAMs on the induction of LTP and LTD at the Schaffer collateral-CA1 synapse in the

hippocampus. mGluR5-selective PAMs significantly enhanced threshold y-burst stimulation (TBS)-induced LTP. In addition, mGluR5

PAMs enhanced both DHPG-induced LTD and LTD induced by the delivery of paired-pulse low-frequency stimulation. Selective

potentiation of mGluR5 had no effect on LTP induced by suprathreshold TBS or saturated LTP. The finding that potentiation of mGluR5-

mediated responses to stimulation of glutamatergic afferents enhances both LTP and LTD and supports the hypothesis that the activation

of mGluR5 by endogenous glutamate contributes to both forms of plasticity. Furthermore, two systemically active mGluR5 PAMs

enhanced performance in the Morris water maze, a measure of hippocampus-dependent spatial learning. Discovery of small molecules

that enhance both LTP and LTD in an activity-appropriate manner shows a unique action on synaptic plasticity that may provide a novel

approach for the treatment of impaired cognitive function.
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INTRODUCTION

Schizophrenia is a complex disorder that includes positive,
negative, and cognitive symptoms (Andreasen, 2000).
Current medications are partially effective in treating
positive symptoms, but largely ineffective in treating
cognitive deficits and negative symptoms. Based on this

and serious adverse effects of available antipsychotic agents,
there is a critical need for new treatment strategies.
Recently, the metabotropic glutamate receptor subtype 5
(mGluR5) has emerged as an exciting target proposed to
have efficacy for the treatment of schizophrenia (Marino
and Conn, 2002; Conn et al, 2009). This hypothesis is based
on evidence suggesting that enhanced signaling through the
N-methyl-D-aspartate (NMDA) glutamate receptor may be
antipsychotic and that mGluR5 and NMDARs are closely
associated signaling partners in forebrain circuits. Activa-
tion of mGluR5 potentiates NMDAR function in multiple
neuronal populations (Awad et al, 2000; Mannaioni et al,
2001; Pisani et al, 2001; Marino and Conn, 2002) and
mGluR5 antagonists or genetic deletion potentiate the
psychotomimetic effects of NMDAR antagonists (Henry
et al, 2002; Kinney et al, 2003, 2005; Brody et al, 2004a, b;
Campbell et al, 2004; Homayoun et al, 2004; Lindsley et al,
2004). Recently, we and others have discovered selective
positive allosteric modulators (PAMs) for mGluR5 that have
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robust efficacy in animal models used to predict effective-
ness in treating positive symptoms of schizophrenia
(O’Brien et al, 2003, 2004; Lindsley et al, 2004, 2006; Kinney
et al, 2005; Le Poul et al, 2005; de Paulis et al, 2006; Chen
et al, 2007, 2008; Conn et al, 2009; Liu et al, 2008). These
mGluR5 PAMs do not activate mGluR5 directly but act at an
allosteric site to potentiate activation by glutamate (Chen
and Conn, 2008; Conn et al, 2009). These findings provide
strong preclinical support for the use of selective activators
of mGluR5 as novel antipsychotic agents.
In addition to antipsychotic efficacy, mGluR5 PAMs have

the potential to treat impaired cognition in schizophrenia
patients. mGluR5 knockout mice have impaired NMDAR-
mediated hippocampal long-term potentiation (LTP) and
NMDA-dependent memory tasks (Lu et al, 1997; Jia et al,
1998). Also, the mGluR5 selective antagonist MPEP blocks
y-burst stimulation (TBS)-induced LTP in area CA1 in
hippocampal slices (Francesconi et al, 2004; Shalin et al,
2006) and in vivo (Manahan-Vaughan and Braunewell,
2005). Finally, the mGluR1/5 agonist, DHPG, primes LTP
induction (Cohen et al, 1998; Raymond et al, 2000). In
addition to regulation of LTP, DHPG induces an NMDAR-
independent form of long-term depression (LTD) (Gaspar-
ini et al, 1999; Huber et al, 2001) and this response is absent
in mGluR5 null mice and in hippocampal slices incubated
with mGluR5 antagonists (Gasparini et al, 1999; Huber et al,
2001; Faas et al, 2002; Hou and Klann, 2004; Huang et al,
2004; Huang and Hsu, 2006).
In the simplest view, mGluR5 potentiation could enhance

synaptic plasticity and thereby enhance some forms of
cognitive function. However, previous studies of electro-
physiological effects of mGluR5 PAMs relied on potentia-
tion of exogenously applied agonists and it is not clear
whether mGluR5 PAMs will enhance the activation of
mGluR5 by synaptically released glutamate. Thus, it is
critical to determine whether mGluR5-selective PAMs
enhance afferent stimulation-induced hippocampal LTP
and LTD. Furthermore, if mGluR5 PAMs preferentially
augment one form of synaptic plasticity and thereby disturb
the LTP/LTD balance, this could disrupt rather than
enhance cognitive function. Indeed, recent studies suggest
that mutations associated with Fragile X Syndrome (FXS)
selectively increase mGluR5-mediated hippocampal LTD
(Huber et al, 2002; Bear et al, 2004; Nosyreva and Huber,
2006), although having no effect (Godfraind et al, 1996;
Paradee et al, 1999; Li et al, 2002) or depressing
hippocampal LTP (Lauterborn et al, 2007). This preferential
enhancement of mGluR-LTD is thought to be a primary
change contributing to cognitive disruption associated with
FXS. Thus, we performed a series of studies to determine
the effects of mGluR5 PAMs on hippocampal LTP and LTD.
We report that selective mGluR5 PAMs enhance afferent

stimulation-induced LTP and LTD at the SC-CA1 synapse.
Importantly, these compounds enhance both forms of
synaptic plasticity while maintaining the normal patterns
of presynaptic activity required to induce each, which may
provide an ideal profile for agents that are used to improve
some forms of cognitive function. In addition, we demon-
strate that these compounds improve performance in a
model of hippocampus-dependent spatial learning. This
builds on studies suggesting that mGluR5 PAMs have
potential utility as novel antipsychotic agents and provides

direct support for the hypothesis that mGluR5 PAMs may
also enhance hippocampal-dependent cognitive function.

MATERIALS AND METHODS

Materials

4-Nitro-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (VU-
29) was synthesized as outlined in detail by de Paulis et al
(2006). 5MPEP was synthesized as detailed by Rodriguez
et al (2005). CDPPB was synthesized as detailed by Lindsley
et al (2004). D-AP5, DHPG, glutamate, U0126, and PP 1
were purchased from Tocris (Ellisville, MO). ADX47273 was
synthesized as outlined in the Supplementary Information
section.

Animals

All animals used in these studies were cared for in
accordance with the National Institutes of Health Guide
for the Care and Use of Laboratory Animals. Experimental
protocols were in accordance with all applicable guidelines
regarding the care and use of animals. Animals were housed
in an Association for Assessment and Accreditation of
Laboratory Animal Care (AALAC) International approved
facility with free access to food and water. All efforts were
made to minimize animal suffering and to reduce the
number of animals used.

Measurement of Phosphoinositide Hydrolysis in
Hippocampal Slices

Agonist-induced phosphoinositide (PI) hydrolysis was
measured in rat hippocampal slices using a modification
of the method outlined by Berridge et al (1982) as described
previously (Berridge et al, 1982; Conn and Sanders-Bush,
1986). Briefly, cross-chopped (350 mM� 350 mM) slices of
male (6–9 weeks) Sprague–Dawley rat hippocampus were
incubated with 95% O2/5% CO2 bubbled Krebs buffer
(108mM NaCl, 4.7mM KCl, 1.2mM MgSO4, 1.2mM
KH2PO4, 2.5mM CaCl2, 25mM NaHCO3 and 10mM
glucose). The tissue was allowed to recover for 30min with
shaking at 371C. Following recovery, the tissue was
combined, washed with warm Krebs buffer, and 25 ml of
gravity packed slices were incubated with 175 ml Krebs
containing 0.5 mCi [3H]myo-inositol for 45min. VU-29 or
vehicle controls were added and incubated for 15min,
followed by the addition of 10mM LiCl and incubated for an
additional 15min. Finally, DHPG was added and followed
by an additional 45min incubation. The reaction was
terminated by the addition of 900 ml of chloroform/
methanol (1 : 2). The aqueous and organic phases were
separated by the addition of 300 ml chloroform and 300 ml
water, vortexing, and allowing the phases to separate by
gravity. The aqueous phase was added to anion exchange
columns (AG 1-X8 Resin, 100–200 mesh, formate form,
BIO-RAD) and [3H]inositol phosphates were eluted and
measured by liquid scintillation counting.
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Cell Culture

Secondary rat cortical astrocytes were prepared as previously
described (Peavy et al, 2001; Zhang et al, 2005; Chen et al,
2007). In brief, neocortices from 2- to 4-day-old Sprague–
Dawley rat pups were dissected and dissociated in DMEM by
trituration with 1-ml pipette tips. The cells were then
centrifuged and resuspended in DMEM (containing 1mM
sodium pyruvate, 2mM L-glutamine, and PenStrep (100U/ml
penicillin and 0.1mg/ml streptomycin; Invitrogen, Carlsbad,
CA)) supplemented with 10% FBS in T75 tissue culture flasks;
the medium was changed the next day. Cell cultures were
maintained at 371C in an atmosphere of 95% air, 5% CO2 for
6–8 days. Cells were shaken overnight (280–310 r.p.m.) to
remove oligodendrocytes and microgliocytes. For ERK1/2
phosphorylation assay, the cells were then trypsinized and
replated into poly-D-lysine-precoated 12-well plates at a
density of about 6� 106 cells per well in full DMEM with
10% FBS. The second day, the medium was switched to full
DMEM with G-5 supplement (Invitrogen) containing epider-
mal growth factor (10 ng/ml), basic fibroblast growth factor
(5ng/ml), insulin (5mg/ml), and other factors. The cells were
nearly confluent within 2 days and resembled the polygonal
astrocytic appearance in vivo. Three days after the addition of
G-5 supplement and 20h before experiments, the medium was
aspirated, and the cells were washed three times with 1�
Hanks’ balanced salt solution, and 1ml of glutamine-free
DMEM was added to each well.

Cell-Based Calcium Fluorescence Measurement

Rat mGluR1d was transfected into HEK293A cells using
Lipofectamine as described earlier (Chen et al, 2007). Rat
mGluR2 and human mGluR4 were co-expressed with Gqi5,
which enables coupling to the calcium mobilization as
described earlier (Galici et al, 2006). Cells were loaded with
calcium-sensitive dye according to the manufacturer’s instruc-
tions (Calcium 3 kit; Molecular Devices, Sunnyvale, CA) after
incubation in glutamate/glutamine-free medium (DMEM and
10% dialyzed fetal bovine serum) for 5h. Compound A (1ml)
from Calcium 3 kit was dissolved in 20ml of 1� Hanks’
balanced salt solution (HBSS; Invitrogen) containing 2.5mM
probenecid (Sigma), adjusted to pH 7.4. Cells were loaded for
50min at 371C under an atmosphere of 5% carbon dioxide.
Dye was then carefully removed, and cells were washed with
HBSS containing probenecid. Cells were maintained in the
same buffer at room temperature for the following assay. For
calcium fluorescence measurement of rat cortical astrocytes,
allosteric modulators were manually added 5min before the
addition of an agonist. The agonist was added at a rate of
52ml/s, and calcium flux was measured using Flexstation II
(Molecular Devices) at 251C. All of the peaks of the calcium
response were normalized to the maximum response to a
saturated dose of glutamate (10mM). The submaximal
concentration (EC20 value) of glutamate was determined for
each separate experiment, allowing for a response varying
from 10 to 30% of the maximum peak.

ERK1/2 Phosphorylation Assay

On the day of each assay, cells were first treated with
CDPPB, and then stimulated with the agonist. At the end of

stimulation, medium containing the drug was aspirated,
and 200 ml of ice-cold lysis buffer (containing 50mM Tris-
HCl, 50mM NaCl, 5mM EDTA, 10mM EGTA, 1mM
Na3VO4, 2mM Na4P2O7 � 10 H2O, 4mM magnesium para-
nitrophenyl phosphate, and 1mM phenylmethylsulfonyl
fluoride plus 10 mg/ml leupeptin, and 2 mg/ml aprotinin) was
added to each well. Cells were frozen at �801C and
underwent three thaw and refreeze cycles. Cells were
scraped into clean tubes, the samples were centrifuged,
and the supernatant was collected. Equal amounts of
supernatant from each sample were mixed with 3� lithium
dodecyl sulfate sample buffer, subjected to SDS-polyacry-
lamide gel electrophoresis, and transferred to nitrocellulose
membranes. Membranes were first blocked and then stained
with primary rabbit anti-p44/42 mitogen-activated protein
kinase (ERK1/2) polyclonal antibody mixed with primary
mouse anti-phospho-p44/42 mitogen-activated protein
kinase (phospho-ERK1/2) monoclonal antibody (Cell Sig-
naling Technology Inc. Beverly, MA). After washing three
times, membranes were subsequently stained with fluor-
escent dye Alexa Fluor 680-conjugated secondary goat anti-
mouse IgG (H+L) (Invitrogen) mixed with fluorescent dye
IRDye800-conjugated secondary goat anti-rabbit IgG (H+
L) (Rockland, Gilbertsville, PA). Membranes were scanned
using Odyssey Imaging System (LI-COR, Lincoln, NE).
ERK1/2 phosphorylation (phosphorylated ERK1/2) is first
normalized to total ERK1/2 and then expressed as
percentage of maximal response or -fold above control.

Extracellular Field Potential Recordings

Young adult (6–9 weeks) male Sprague–Dawley rats
(Charles River, Wilmington, MA) were anesthetized with
isoflorane, decapitated and the brains were quickly removed
and submerged into ice-cold cutting solution (in mM: 110
sucrose, 60 NaCl, 3 KCl, 1.25 NaH2PO4, 28 NaHCO3, 5
glucose, 0.6 ( + )-sodium-L-ascorbate, 0.5 CaCl2, 7 MgCl2)
continuously bubbled with 95% O2/5% CO2. The brains
were then hemisected and 400 mm transverse slices were
made using a vibratome (Leica VT100S). Individual
hippocampi were removed from the slice and transferred
to a room temperature mixture containing equal volumes of
cutting solution and artificial cerebrospinal fluid (aCSF; in
mM: 125 NaCl, 2.5 KCl, 1.25 NaH2PO4, 25 NaHCO3, 25
glucose, 2 CaCl2, 1 MgCl2) where they were allowed to
equilibrate for 30min. The hippocampi were then placed
into an interface chamber perfused with oxygenated aCSF
(1.5–2ml/min) for at least 1.5 h at 311C. Bipolar-stimulating
electrodes were placed in the stratum radiatum near the
CA3-CA1 border in order to stimulate the Schaffer
collaterals. Recording electrodes were pulled with a Flam-
ing/Brown micropipette puller (Sutter Instruments, CA) to a
resistance of 3–5MO, filled with aCSF and placed in the
stratum radiatum of area CA1. Field potential recordings
were acquired using either a Microelectrode AC Amplifier
Model 1800 (A-M Systems) or Patch Clamp PC-505B
(Warner Instruments) amplifier and pClamp 9.2 software.
Input–output curves were generated to determine the
stimulus intensity that produced 40–50% of the maximum
response before each experiment, which was used as the
baseline stimulation. Baseline stimulation was applied at
0.05Hz. Drugs were diluted to the appropriate concentrations
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in either DMSO (o0.1%) or aCSF. Threshold LTP was
induced by one train of TBS (nine bursts of four pulses at
100Hz; 230ms interburst interval). Saturated LTP was
induced by four trains of 10Hz TBS (nine bursts of four
pulses at 100Hz, 100ms interburst interval). Chemically
induced mGluR-LTD was induced by the application of
DHPG (25–75mM) for 10min. Synaptically evoked mGluR-
LTD was induced by paired-pulse low-frequency stimula-
tion (PP-LFS) consisting of 900 pairs of stimuli (50-ms
interstimulus interval) delivered at 1Hz for 15min and
performed in aCSF containing in mM: 124 NaCl, 5 KCl, 1.25
NaH2PO4, 26 NaHCO3, 10 glucose, 2 CaCl2, 1 MgCl2 (Kemp
and Bashir, 1999; Huber et al, 2000). Synaptically evoked
NMDA receptor-dependent LTD was induced by low-
frequency stimulation (LFS) consisting of 900 stimuli
delivered at 1Hz for 15min in the same aCSF used in the
PP-LFS studies. Sampled data was analyzed offline using
Clampfit 9.2. Three sequential fEPSPs were averaged and
their slopes calculated. All fEPSP slopes were normalized to
the average slope calculated during the predrug period
(percent of baseline). Statistical significance was analyzed
using GraphPad Prism and the Student’s unpaired t-test
unless otherwise noted.

Whole-Cell Patch-Clamp Recordings

18 to 24-day-old Sprague–Dawley rats were anesthetized
with isoflorane, decapitated, and the brains were quickly
removed and submerged into ice-cold choline chloride
replacement solution (in mM: 126 Choline chloride, 2.5 KCl,
8 MgSO4, 1.3 MgCl2, 1.2 NaH2PO4, 10 glucose, 26 NaHCO3).
The brains were then hemisected and 300 mm transverse
slices were made using a vibratome (Vibratome 3000 Plus).
Individual hippocampi were removed from the slice and
transferred to a holding chamber containing artificial
cerebrospinal fluid (aCSF; in mM: 130 NaCl, 3.5 KCl, 1.25
NaH2PO4, 24 NaHCO3, 10 glucose, 1.5 CaCl2, 1.5 MgCl2),
incubated at 371C for 30min, and then equilibrated at room
temperature for at least 45min before recording. In all
experiments, 5mM glutathione and 500 mM pyruvate were
included in the choline chloride buffer and in the holding
chamber ACSF. During recordings, slices were maintained
fully submerged on the stage of a brain slice chamber
perfused with heated (321C) and oxygenated ACSF at 2ml/
min. CA1 pyramidal neurons were visualized with an
Olympus BX51WI upright microscope (Olympus, Lake
Success, NY) coupled with a � 40 water immersion
objective and Hoffman optics. Borosilicate glass pipettes
were pulled using a Flaming/Brown micropipette puller
(Sutter Instruments, CA) to produce patch electrode
resistances of 2–4MO when filled with an intracellular
solution containing (in mM): 135 K-MeSO4, 5 NaCl, 1
MgCl2, 0.025 CaCl2, 10 HEPES, 0.6 EGTA, 2 ATP, 0.2 GTP.
The voltage-clamp signal was low pass-filtered at 2 kHz,
digitized at 10 kHz, and acquired using a Clampex9.2/
DigiData 1332 system (Molecular Devices, Sunnyvale, CA).

Morris Water Maze

CDPPB was suspended in a vehicle consisting of 20% w/v 2-
hydroxypropyl-b-cyclodextrin. ADX47273 was dissolved in
a vehicle consisting of 10% v/v Tween-80. All injections

were made through the intraperitoneal (i.p.) route in a
volume of 1ml/100 g body weight. The maze apparatus
consisted of a 90 cm diameter tub filled with 23±11C water
that covered a 6 cm diameter submerged platform. Visual
cues were placed above the rim of the tub to facilitate spatial
navigation. The water was made opaque by the addition of
dilute nontoxic white paint. Mice were injected i.p. with the
mGluR5-positive allosteric modulators CDPPB (10mg/kg),
or ADX47273 (10mg/kg), or their corresponding vehicles
20min before testing. A total of four test trials (each
separated by 5min) were conducted on each day for a total
of 13 days, with four separate starting points utilized for
each trial. The sequence of the starting point location was
randomized on each day of testing. Latency to reach the
platform was recorded for each trial, and a maximum swim
time was set at 60 s per trial. If the animal failed to reach the
platform on any of the trials within 60 s, it was then gently
guided by the experimenter to the platform and given a
score of 60 s. Acquisition criteria were considered to be
obtained when the latency to reach the platform was p15 s
on each of the four consecutive trials. On the day following
the last day of testing, a probe trial was conducted in which
the platform was removed and time spent in the quadrant
where the platform was previously located was recorded for
each of the four trials. Drugs were not administered on the
day of the probe trial.

RESULTS

Allosteric Modulators of mGluR5 have Predicted Effects
on Phosphoinositide Hydrolysis and ERK1/2
Phosphorylation in Native Systems

Group I mGluRs signal through the activation of Gq

proteins leading to the downstream effects of PKC
activation, PI hydrolysis and increased intracellular calcium
release (Conn and Pin, 1997). Both the mGluR5 PAMs and
the neutral allosteric site ligand, 5MPEP, have been
previously characterized using cell lines and recombinantly
expressed mGluRs (Rodriguez et al, 2005; Chen et al, 2007).
However, prior to using these compounds for studies of the
role of mGluR5 in hippocampal LTP and LTD, we verified
their ability to modulate mGluR5-mediated increases in PI
hydrolysis in hippocampal slices. In agreement with
previous studies (Sacaan et al, 1998; Gasparini et al, 1999;
Johnson et al, 1999), the group I mGluR agonist, DHPG
induced a concentration-dependent increase in PI hydro-
lysis in rat hippocampal slices (Figure 1a). Consistent with
its effect in cell lines, the mGluR5 PAM, VU-29 had no effect
on baseline PI hydrolysis but induced a leftward shift in the
DHPG concentration response curve (CRC) and enhanced
the maximum response to DHPG (Figure 1a; DHPG alone,
EC50¼ 8±1.6 mM; DHPG+VU-29, EC50¼ 4.5±1mM, max
response¼ 138±12%, n¼ 5). We then determined the
effect of VU-29 on the response to a single concentration
of DHPG that induced an approximate EC20 PI hydrolysis
response. DHPG (3 mM) induced a small but significant
increase in PI hydrolysis compared with vehicle control
(Figure 1b; po0.0001, n¼ 3), which was significantly
potentiated by VU-29 (5 mM) (Figure 1b; po0.001, n¼ 3).
5MPEP was previously described as a neutral allosteric site
ligand at mGluR5 that is capable of selectively inhibiting the
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effects of mGluR5 PAMs, such as VU-29 (Rodriguez et al,
2005; Chen et al, 2007, 2008). Consistent with this, 5MPEP
(100 mM) had no effect on the phosphoinositide hydrolysis
response to DHPG, but specifically inhibited the ability of
VU-29 to potentiate the PI hydrolysis response (Figure 1b;
po0.001, n¼ 3).
In addition, previous studies have demonstrated that

multiple mGluR5 PAMs, including CPPHA and ADX47273
potentiate DHPG-induced increases in ERK1/2 phosphor-
ylation in hippocampal slices and cortical astrocytes (Zhang
et al, 2005; Liu et al, 2008). We now determined the effect of
the VU-29 analog, CDPPB, on ERK1/2 phosphorylation in
cortical astrocytes to confirm reports that mGluR5 PAMs
belonging to this structural class also potentiate coupling of
mGluR5 to this signaling pathway. As with the other
mGluR5 PAMs, CDPPB induced a robust potentiation of
DHPG-induced increases in ERK1/2 phosphorylation in
astrocytes (see Supplementary Figure S1). Finally, we have
previously shown that CPPHA potentiates mGluR5 regula-
tion of NMDA receptor currents in hippocampal pyramidal
cells (O’Brien et al, 2004) and that VU-29 and CDPPB
selectively potentiate mGluR5-mediated responses in acute
brain slices in the subthalamic nucleus although having no
effect on mGluR1-mediated responses in the substantia
nigra pars reticulata (Chen et al, 2007). Together, these data
provide strong evidence that mGluR5 PAMs potentiate
mGluR5 responses in multiple native systems.

VU-29 Potentiates Threshold TBS-Induced LTP in Rat
Hippocampal CA1 Region

To determine the effect of VU-29 on induction of LTP,
extracellular field excitatory postsynaptic potentials
(fEPSPs) were recorded from the dendritic layer of CA1
following stimulation of the Schaffer collaterals (SC-CA1
synapse). TBS is a common stimulus protocol used to elicit
robust LTP at this synapse (Larson and Lynch, 1989).
Consistent with multiple previous reports, stimulation of SC
afferents using a standard TBS protocol-induced robust LTP
at the SC-CA1 synapse (Figure 2a; 183±10% of baseline at
45min post TBS, n¼ 6). In contrast, stimulation with a
modified TBS protocol, termed threshold TBS, using one

train of a lower frequency of stimulus bursts (see Materials
and methods) induced only a slight potentiation of fEPSPs
(Figure 2b; 115±6% of baseline at 45-min post threshold
TBS, n¼ 10). Threshold TBS provides an ideal protocol that
can be used to determine whether selective potentiation of
mGluR5 with VU-29 can enhance LTP in response to a
submaximal stimulus. Application of 500nM VU-29 had no
effect on the baseline synaptic responses as measured by
fEPSP slope (Figure 2c; 99.6±6% of baseline, n¼ 8).
Interestingly, this same threshold TBS protocol induced
robust LTP when delivered to slices preincubated with VU-
29 (500nM) for 20min prior to delivery of the stimulus train
(Figure 2d; 152±8% of baseline at 45-min post TBS; po0.05,
n¼ 10). VU-29 did not alter paired-pulse facilitation, fiber
volley amplitude, or input–output curves compared with
vehicle controls (see Supplementary Figure S2). In addition,
VU-29 did not alter passive membrane properties of CA1
pyramidal cells when recorded in whole-cell patch-clamp
mode including input resistance, action potential firing or
membrane potential (see Supplementary Figure S3).
Importantly, 5MPEP (100mM) completely blocked the ability

of VU-29 to enhance LTP induced by threshold TBS (Figure 3a;
92±14% of baseline at 45-min post TBS; p40.05, n¼ 8),
suggesting that the action of VU-29 is due to actions of this
compound on mGluR5. In contrast, 5MPEP (100mM) had no
effect on the induction of LTP by a standard suprathreshold
TBS protocol (Figure 3b; 192±19% of baseline at 45min post
TBS in the absence of 5MPEP, n¼ 8; 185±13% of baseline 45-
min post TBS in the presence of 5MPEP, n¼ 8) or by the
threshold TBS protocol (Figure 3c; 133±14% of baseline at 45-
min post TBS in the absence of 5MPEP, n¼ 4; 128.3±11% of
baseline at 45-min post TBS in the presence of 5MPEP, n¼ 5).
This suggests that the effect of 5MPEP is specific to the VU-29
potentiation and excludes the possibility that 5MPEP inhibited
LTP induction through blockade of signaling components other
than mGluR5 that are required for LTP induction.

Induction of LTP in the Presence of VU-29 is Dependent
on Activation of NMDA Receptors and an Src-Family
Tyrosine Kinase

Previous studies suggest that induction of LTP at the SC-
CA1 synapse by suprathreshold TBS is dependent on
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activation of NMDA receptors (Collingridge and Bliss,
1995). In addition, it has been shown that activation of
mGluR5 with DHPG potentiates NMDA receptor currents
(Collingridge and Bliss, 1995; Doherty et al, 1997, 2000; Jia
et al, 1998; Awad et al, 2000; Mannaioni et al, 2001; Gerber
et al, 2007) and that this potentiation occurs in a G-protein,
protein kinase C, and Src-family kinase-dependent manner
(Benquet et al, 2002). Furthermore, we previously reported
that mGluR5 PAMs potentiate DHPG-induced enhancement
of NMDA receptor currents recorded from CA1 pyramidal
cells (O’Brien et al, 2004). Thus, it is possible that
potentiation of synaptically activated mGluR5 by VU-29
enhances the induction of normal NMDA receptor-depen-
dent LTP. However, it is also possible that VU-29 leads to
induction of a distinct form of LTP that is independent of
NMDA receptor activation. To determine whether threshold
TBS-LTP is dependent on NMDA receptor activation and
Src-family kinases in VU-29-treated slices, we determined
the effects of the NMDA receptor antagonist, D-AP5
(Figure 4a and b), and the Src-family kinase inhibitor,
PP 1 (Figure 4b), on TBS-induced LTP in the presence
of VU-29. D-AP5 (50 mM) and PP 1 (20 mM) completely
blocked the induction of LTP by the combination
of VU-29 and threshold TBS (Figure 4; D-AP5:
106.4±9% of baseline, n¼ 4; PP 1: 98.5±4% of baseline,
n¼ 7).

VU-29 Potentiates Chemically Induced mGluR-LTD

It is well established that activation of mGluR5 by
exogenous agonist application induces LTD of synaptic
transmission at the SC-CA1 synapse, phenomenon referred
to as mGluR-LTD (Palmer et al, 1997; Camodeca et al, 1999;
Fitzjohn et al, 1999; Huber et al, 2000, 2001; Kemp and
Bashir, 2001; Faas et al, 2002; Tan et al, 2003; Nosyreva and
Huber, 2005; Huang and Hsu, 2006; Volk et al, 2006; Kumar
and Foster, 2007). Based on the clear role of mGluR5 in
mGluR-LTD, we were somewhat surprised that selective
potentiation of mGluR5 induced such a robust increase in
threshold TBS-LTP and might have expected the opposite
result. In light of this, we performed a series of studies to
determine whether selective potentiation of mGluR5 would
also enhance mGluR-LTD induced by application of the
group I mGluR agonist DHPG. Before determining the effect
of VU-29 on LTD, we established a concentration of DHPG
that resulted in a significant but modest LTD response to
ensure that we were working in a submaximal DHPG
concentration range. At 75 mM DHPG induced robust LTD
(Figure 5a; 49.1±7.8% of baseline 80–90min following
washout of DHPG, n¼ 4). A similar, though somewhat
smaller LTD response was elicited with the application of
50 mM DHPG (Figure 5a; 68.9±5.5% of baseline, n¼ 5). In
contrast, 25 mM DHPG resulted in only a slight depression
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of fEPSP slopes (93±4.15% of baseline, n¼ 10) measured
80–90min following washout of DHPG (Figure 5a). Based
on these findings, we chose to use 25 mM DHPG for all
subsequent experiments. Twenty-minute pretreatment of
slices with VU-29 (500 nM) did not potentiate the effects of
25 mM DHPG (84±6% of baseline in the presence of 500 nM
VU-29, n¼ 6; 89.4±2.9% of baseline in the absence of
500 nM VU-29, n¼ 9). We therefore increased the concen-

tration of VU-29 to 1 mM and found that prior application of
this higher concentration resulted in a significant enhance-
ment of the long-term depression of synaptic transmission
induced by DHPG, but had no effect on the initial acute
depression (Figure 5b; Acute: 64.2±3.3% of baseline in the
absence of VU-29; 53.6±3.5% of baseline in the presence of
VU-29, p40.05; LTD: 93±4.15% of baseline in the absence
of VU-29, n¼ 10; 70.63±4.1% of baseline in the presence of
VU-29, n¼ 4, po0.01). As is the case for VU-29 potentia-
tion of threshold LTP, the neutral allosteric modulator
5MPEP completely blocked the ability of VU-29 to
potentiate DHPG-induced LTD (Figure 5c; 70.63±4.1% of
baseline in the presence of VU-29, n¼ 4; 89.4±2.9% of
baseline in the absence of VU-29, n¼ 3, po0.05).
Previous studies indicate that the MAP kinase, ERK1/2, is

phosphorylated upon induction of DHPG-LTD in the CA1
region of hippocampal slices (Berkeley and Levey, 2003;
Gallagher et al, 2004; Banko et al, 2006) and that inhibitors
of ERK1/2 signaling inhibit DHPG-LTD (Gallagher et al,
2004; Banko et al, 2006). These data, coupled with findings
that mGluR5 PAMs potentiate mGluR5-induced ERK1/2
phosphorylation discussed above suggest that potentiation
of ERK1/2 phosphorylation may be important for mGluR5
PAM enhancement of DHPG-LTD. To test the hypothesis
that ERK1/2 phosphorylation is required for the enhance-
ment of DHPG-LTD by VU-29, we performed extracellular
field potential recordings in the presence of the MEK
inhibitor, U0126. Prior treatment of the slice with U0126
(20 mM) significantly inhibited the ability of VU-29 (1 mM)
to enhance LTD induced by DHPG (25 mM) (Figure 5d;
67.2±5.4% of baseline in the absence of U0126, n¼ 4;
90.6±5.7% of baseline in the presence of U0126, n¼ 4,
po0.05). Taken together, these data suggest a mechanistic
link between enhancement of the MEK/ERK pathway and
the ability of mGluR5 PAMs to enhance mGluR-LTD.

VU-29 Potentiates Stimulus-Induced NMDA Receptor-
Independent LTD

Paired-pulse low-frequency stimulation (PP-LFS) induces a
form of LTD that is independent of NMDA receptor
activation (Kemp and Bashir, 1997, 1999; Huber et al,
2000; Kemp et al, 2000; Kumar and Foster, 2007). Initial
studies using the broad-spectrum mGluR antagonist
LY341495 suggested that this form of synaptically evoked
LTD is dependent on mGluR activation (Bortolotto et al,
1999; Huber et al, 2000; Nosyreva and Huber, 2005). If this
stimulus-induced LTD is mechanistically similar to DHPG-
induced LTD and mediated by activation of mGluR5, VU-29
may potentiate the LTD response to PP-LFS stimulation. We
therefore performed experiments to determine the effect of
selective potentiation of mGluR5 by VU-29 on synaptically
evoked LTD. Consistent with previous reports, PP-LFS
induced a persistent depression of synaptic transmission at
the SC-CA1 synapse that was somewhat smaller than the
maximal LTD induced by DHPG (Figure 6a). Interestingly,
PP-LFS-induced LTD was significantly enhanced by perfu-
sion with VU-29 (1 mM) (Figure 6a; 84.6±3.6% of baseline
in the absence of VU-29, n¼ 6; 70.8±5.3% of baseline in the
presence of VU-29, n¼ 7, po0.05).
Although mGluR-LTD is independent of NMDA receptor

activation, a distinct form of LTD has also been described at
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the SC-CA1 synapse that is clearly dependent on NMDA
receptor activation (Mulkey and Malenka, 1992). This
NMDA receptor-dependent LTD is induced by a distinct
stimulus protocol that includes LFS without the paired-
pulse stimulation used for induction of mGluR-LTD.
However, as discussed above, mGluR5 activation potenti-
ates NMDA receptor currents and mGluR5 PAMs enhance
this effect (O’Brien et al, 2004). Thus, it is possible that
VU-29 could potentiate NMDA receptor-dependent LTD in

a manner similar to potentiation of NMDA receptor-
dependent LTP by threshold TBS. If so, this could
contribute to the enhancement seen during PP-LFS-induced
LTD. However, in contrast to the effects of VU-29 on
threshold TBS-LTP, enhancement of PP-LFS LTD persists in
the presence of the NMDA receptor antagonist D-AP5
(Figure 6b; 90.7±2.2% of baseline in the absence of VU-29
n¼ 5; 80.5±1% of baseline in the presence of VU-29, n¼ 5,
po0.01). This is consistent with previous results showing
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that mGluR-LTD is independent of NMDA receptor
activation (Kemp and Bashir, 1997, 1999; Huber et al,
2001; Kumar and Foster, 2007). Furthermore, VU-29 does
not potentiate LTD induced by the low-frequency stimula-

tion protocol used to induce NMDA receptor-dependent
LTD. LFS induced a modest long-lasting reduction in the
slope of the fEPSP (Figure 6c). Surprisingly, we found that
VU-29 was not able to potentiate this NMDA receptor-
dependent form of LTD (Figure 6c; 87.07±4% of baseline in
the absence of VU-29, n¼ 5; 86.88±6.7% in the presence of
VU-29, n¼ 4, p40.05).

VU-29 Does not Alter Induction of Suprathreshold LTP
or Reduce Saturated LTP

The finding that selective potentiation of mGluR5 enhances,
afferent stimulation-induced LTD raises the possibility that
selectively enhancing mGluR5 at glutamatergic synapses
could reduce the LTP response induced by some stimulus
protocols. Thus, although VU-29 potentiates threshold TBS-
induced LTP, it is conceivable that this compound could
dampen the maximal LTP that is induced with suprathres-
hold TBS stimulation or lead to depotentiation of saturated
LTP in response to a stimulus protocol that normally would
only lead to LTP. To address these possibilities, we
determined the effect of VU-29 on LTP induced by
suprathreshold stimulation. Interestingly, VU-29 had no
effect on LTP induction when a stimulus protocol (four
trains of 10Hz TBS) that induces robust LTP in the absence
of VU-29 was used (Figure 7; 218±26% of baseline at 30-
min post TBS in the absence of VU-29, n¼ 6; 192±13% of
baseline in the presence of VU-29, n¼ 5, p40.05). To
determine whether VU-29 would alter the response to TBS
stimulation under conditions of saturated LTP, we applied
VU-29 to slices in which a maximal LTP had been
previously established. Similar to studies of the response
to a single suprathreshold TBS protocol (Figure 7a), VU-29
had no effect on the response to the second suprathreshold
TBS (Figure 7b: 191±14% of baseline 30-min post TBS,
n¼ 6; 185±7% of baseline 30-min post TBS in the presence
of VU-29, n¼ 6, p40.05).

A Structurally Distinct mGluR5 PAM Mimics the Effects
of VU-29 on Threshold TBS-Induced LTP and DHPG-
LTD

If VU-29-induced potentiation of threshold TBS-LTP and
DHPG-LTD is due to selective potentiation of mGluR5
responses, it should be mimicked by a structurally distinct
mGluR5 PAM. A novel mGluR5-selective PAM, termed
ADX47273 that is structurally unrelated to VU-29 has
recently been identified (Le Poul et al, 2005; de Paulis et al,
2006; Liu et al, 2008). This provides an excellent additional
tool to verify the effects of mGluR5 PAMs on LTP and LTD.
In addition, ADX47273 is systemically active when dosed
intraperitoneally and activates mGluR5-mediated increases
in ERK1/2 phosphorylation in vivo, making it a useful
compound for behavioral studies (Liu et al, 2008). We and
others (Liu et al, 2008) have established a protocol for
synthesis of ADX47273 and characterized this compound to
verify that it is a selective mGluR5 PAM (see Supplementary
Figure S4). In previous studies, we rigorously characterized
DHPG-induced calcium mobilization in secondary cultured
rat cortical astrocytes and found that this response is
exclusively mediated by mGluR5 (Peavy et al, 2002) and
that mGluR5 PAMs potentiate this response (Rodriguez
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Figure 6 Selective enhancement of mGluR5 receptor signaling sig-
nificantly increases stimulus induced mGluR-LTD. (a) Paired-pulse low-
frequency stimulation induces mGluR-dependent LTD that was significantly
enhanced following pre-incubation of the slice with 1 mM VU-29 (n¼ 6–7;
po0.05). The enhancement of PP-LFS-induced LTD is independent of
NMDA receptor activation and selective enhancement of mGluR5
receptor signaling has no effect on NMDA receptor-dependent LTD. (b)
Incubation of the slice with 50mM D-AP5 did not affect the ability of 1 mM
VU-29 to potentiate PP-LFS-induced LTD (n¼ 5; po0.01). (c) Low-
frequency stimulation induces NMDA receptor-dependent LTD that is not
enhanced in the presence of 1mM VU-29 (n¼ 5–6; p40.05). Error bars
represent SEM.
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et al, 2005; Zhang et al, 2005; Hemstapat et al, 2006; Chen
et al, 2007). ADX47273 induced a robust potentiation of
glutamate-induced calcium mobilization in cortical astro-
cytes in a manner similar to that previously reported for
VU-29. Thus, ADX47273 induced a concentration-depen-
dent potentiation of the response to an EC20–EC30

concentration of glutamate (300 nM) with an EC50 value
for ADX47273 of 108±41 nM (Supplementary Figure S5).
Furthermore, ADX47273 (10 mM) did not affect the gluta-
mate concentration response curves of mGluR1, mGluR2, or
mGluR4 (Supplementary Figure S6; p40.05), suggesting
that this compound is selective as a PAM for mGluR5
relative to these other mGluR subtypes. Data presented by
Liu et al (2008) also confirms the selectivity of ADX47273 as
well as demonstrating that ADX47273 competes with [3H]-
MPEP binding and increases both ERK and CREB
phosphorylation in the hippocampus and prefrontal cortex
(Liu et al, 2008). Consistent with the effects of VU-29
(Figure 2d), ADX47273 (10 mM) induced a significant
increase in threshold TBS-induced LTP of fEPSPs in the
rat hippocampal CA1 region (see Supplementary Figure
S7A; 133±6% of baseline at 45-min post TBS in the absence
of ADX47273, n¼ 9; 176±9% of baseline at 45-min post
TBS in the presence of ADX47273, n¼ 12). Although the
control level of LTP induced by the threshold-TBS protocol
is variable from day to day, the potentiation of threshold-
TBS LTP induced by ADX47273 was virtually identical to
that induced by threshold-TBS in the presence of VU29.
Furthermore, ADX47273 (10 mM) induced a significant
potentiation of DHPG-induced LTD while having no effect
on acute depression (see Supplementary Figure S7B; Acute:
64.2±3.3% of baseline in the absence of ADX47273;
63.3±4.1% of baseline in the presence of ADX47273,
p40.05; LTD: 93±4.15% of baseline in the absence of
ADX47273, n¼ 9; 71.5±2.5% of baseline in the presence of
ADX47273, n¼ 4, po0.01). Taken together, these data
provide strong evidence that selective potentiation of
mGluR5 responses to endogenous glutamate potentiates
threshold TBS-induced LTP and DHPG-induced LTD
and will allow further in vivo characterization of mGluR5
PAMs.

mGluR5 PAMs Enhance Hippocampus-Dependent
Learning and Memory

Collectively our data demonstrate a clear ability for mGluR5
PAMs to enhance both hippocampal LTP and LTD in a
manner that maintains appropriate activity-dependence of
these forms of synaptic plasticity. Theoretically, this ability
to enhance both LTP and LTD in a manner that does not
shift the balance of these forms of synaptic plasticity could
provide an ideal profile for compounds that could be used
as cognition-enhancing agents. To directly test the hypoth-
esis that mGluR5 PAMs enhance a hippocampus-dependent
form of learning, we performed studies to determine the
effects of two systemically active and structurally distinct
mGluR5 PAMs, CDPPB and ADX47273, on performance in
the Morris water maze, a model of hippocampus-dependent
spatial learning. Both CDPPB and ADX47273 (each at a dose
of 10mg/kg) enhanced performance in the Morris water
maze. This augmented performance is evidenced by
significant decreases in the number of days required to
reach the acquisition criteria (Figure 8; 10.23±0.54 in the
absence of CDPPB, n¼ 13; 8.5±0.57 in the presence of
CDPPB, n¼ 12, po0.05; 8.64±0.69 in the absence of
ADX47273, n¼ 11; 6.83±0.63 in the presence of
ADX47273, n¼ 12, po0.05) and increased time spent in
the target quadrant during the probe trial (Figure 8;
51.5±3.5% in the absence of CDPPB, n¼ 13; 63.6±4.0%
in the presence of CDPPB, n¼ 12, po0.05; 53.4±1.9% in
the absence of ADX47273, n¼ 11; 68.1±2.9% in the
presence of ADX47273, n¼ 12, po0.05). These data,
coupled with the unique profile of mGluR5 PAMs on
hippocampal synaptic plasticity provide strong support for
the hypothesis that mGluR5 PAMs may provide efficacy as a
novel approach to enhancing cognitive function in vivo.

DISCUSSION

In recent years, mGluR5 PAMs have emerged as an exciting
new approach that holds promise for treatment of the
positive symptoms of schizophrenia (see Conn et al (2009)
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Figure 7 VU-29-facilitated LTP shares similar mechanisms as TBS-induced LTP in area CA1 of the hippocampus. (a) 500 nM VU-29 did not alter LTP
induced by a suprathreshold TBS protocol that induces robust LTP. In control slices, a 4� 100Hz TBS-induced robust LTP. The same stimulation in the
presence of VU-29 yielded a potentiation that was not significantly different from control (n¼ 5; p40.05). (b) 500 nM VU-29 did not alter the induction of
LTP by a suprathreshold TBS protocol in slices in which LTP was previously fully saturated. LTP was induced by four trains of 10Hz TBS. After 30min, the
slices were incubated with 500 nM VU-29, followed by another four trains of 10Hz TBS, which did not overcome the potentiation induced by the first four
trains of TBS (n¼ 8; p40.05). Error bars represent SEM.
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for review). In addition, increasing evidence suggests that
mGluR5 plays an important role in multiple forms of
learning and memory and that selective mGluR5 PAMs may
provide a novel approach to treat cognitive disturbances in
patients with schizophrenia and other disorders that
include impaired cognitive function (Campbell et al, 2004;
Homayoun et al, 2004; O’Brien et al, 2004; Kinney et al,
2005; Balschun et al, 2006; Lecourtier et al, 2007; Bikbaev
et al, 2008; Chan et al, 2008; Darrah et al, 2008).
Abundant evidence suggests that mGluR5 plays important

roles in the induction of both hippocampal LTP (Lu et al,
1997; Cohen et al, 1998; Raymond et al, 2000; Francesconi
et al, 2004; Manahan-Vaughan and Braunewell, 2005; Shalin
et al, 2006) and LTD (Gasparini et al, 1999; Huber et al,
2001; Faas et al, 2002; Hou and Klann, 2004; Huang et al,
2004; Huang and Hsu, 2006), two opposing long-lasting
forms of synaptic plasticity. On the surface, the roles of
mGluR5 in these forms of synaptic plasticity are consistent
with potential cognition-enhancing effects of these agents.
However, the potential for selective actions on these
opposing forms of synaptic plasticity raises the possibility
that mGluR5 PAMs could lead to inappropriate long-term
changes in synaptic responses that are no longer deter-
mined by specific patterns or frequencies of synaptic
activity. The most important finding of the present studies
is that mGluR5 PAMs enhance both LTP and LTD but do
not alter the balance or patterns of activity that induce these
forms of hippocampal synaptic plasticity. This is in striking
contrast to some pathological conditions that include
pathophysiological changes in responses to different
patterns of afferent stimulation. For instance, in animal

models of FXS, induction of mGluR5-dependent LTD is
selectively enhanced (Huber et al, 2002; Bear et al, 2004;
Nosyreva and Huber, 2006) whereas induction of LTP is
impaired (Lauterborn et al, 2007) and this is thought to
underlie the cognition-impairment seen in FXS patients.
Similar findings have been reported in animal models of
intense stress (Chaouloff et al, 2007, 2008) or seizure
activity (Kirschstein et al, 2007). The previous findings
illustrate the critical need to ensure that agents intended to
enhance cognitive function do not induce pathophysiologi-
cal changes in the balance of these forms of synaptic
plasticity.
The unique ability of mGluR5 PAMs to enhance both LTP

and LTD and maintain appropriate dependence of both
forms of plasticity on specific patterns of synaptic activity,
rather than inducing pathophysiological changes in the
balance of LTP and LTD, suggests that these agents could
have an ideal profile for use as potential cognition-
enhancing agents. Consistent with this, we now report
direct evidence that two structurally distinct mGluR5 PAMs
enhance performance in a model of hippocampus-
dependent spatial learning. These findings are consistent
with multiple studies that have been reported over the past
year revealing that mGluR5 PAMs enhance other aspects of
cognitive function in animal models (Lecourtier et al, 2007;
Chan et al, 2008; Darrah et al, 2008; Liu et al, 2008). For
example, the mGluR5 PAM, DFB, induced marked im-
provement in spatial alternation retention (Balschun et al,
2006). In addition, CDPPB-improved cognitive flexibility in
a set-shifting paradigm after disruption with MK-801
(Darrah et al, 2008) and ADX47273 increased object
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Figure 8 The systemically active mGluR5 PAMs CDPPB and ADX47273 enhance performance in the Morris water maze. (A) CDPPB (10mg/kg)
decreases latency to reach platform (a1), decreases mean number of days to reach criteria (p15 s to reach platform; po0.05) (a2), and increases time spent
in target quadrant during probe trial (a3) (n¼ 12–13; po0.05). (b) ADX47273 (10mg/kg) also decreases latency to reach platform (b1), decreases mean
number of days to reach criteria (p15 s to reach platform; po0.05) (b2), and increases time spent in target quadrant during probe trial (b3) (n¼ 11–12;
po0.05). *po0.05.
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exploration in a novel object recognition paradigm (Liu
et al, 2008). Thus, our current findings are consistent with
an emerging set of behavioral studies and may provide
insights into the mechanisms by which mGluR5 PAMs can
enhance cognitive function.
In addition to providing critical new insights into the

roles of mGluR5 in both LTP and LTD, these findings
illustrate a critical potential advantage of PAMs relative to
traditional agonists. Unlike mGluR5 PAMs, mGluR5 ago-
nists induce profound LTD and also lead to induction of
seizure activity in hippocampal slices and in animal models
(Merlin and Wong, 1997; Merlin et al, 1998; Wong et al,
1999; Kingston et al, 2002; Wong et al, 2005). Thus,
traditional mGluR5 agonists have the potential to impair
cognitive function by selectively inducing LTD and could
induce seizure activity. This provides a potential therapeutic
advantage to maintaining activity-dependence of mGluR5
signaling by using mGluR5 PAMs that selectively potentiate
responses to synaptically released glutamate. Furthermore,
it is intriguing that, in contrast to mGluR5 PAMs, the
mGluR5-selective agonist CHPG enhances a form of LTD
(induced by LFS) that is normally NMDA receptor-
dependent but mGluR5-independent (Neyman and Mana-
han-Vaughan, 2008).
In summary, when taken together with multiple lines of

evidence suggesting that these compounds have antipsy-
chotic efficacy (O’Brien et al, 2003, 2004; Lindsley et al,
2004, 2006; Kinney et al, 2005; Le Poul et al, 2005; de Paulis
et al, 2006; Chen et al, 2007, 2008; Liu et al, 2008), the
present data provide strong preclinical support for use of
selective mGluR5 PAMs as novel therapeutic agents capable
of treating both the positive symptoms and cognitive
deficits associated with schizophrenia. In addition, these
data raise the possibility that mGluR5 PAMs have potential
utility in treatment of other disorders that involve impair-
ments in cognitive function.
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