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Histological and behavioral research in bipolar disorder (BD) implicates structural abnormalities in the hippocampus. Brain-derived

neurotrophic growth factor (BDNF) protein is associated with hippocampal development and plasticity, and in mood disorder

pathophysiology. We tested the hypotheses that both the BDNF val66met polymorphism and BD diagnosis are associated with

decreased hippocampus volume, and that individuals with BD who carry the met allele have the smallest hippocampus volumes

compared to individuals without BD and val/val homozygotes. We further explored localization of morphological differences within

hippocampus in BD associated with the met allele. Twenty individuals with BD and 18 healthy comparison (HC) subjects participated in

high-resolution magnetic resonance imaging scans from which hippocampus volumes were defined and measured. We used linear mixed

model analysis to study effects of diagnosis and BDNF genotype on hippocampus volumes. We then employed three-dimensional

mapping to localize areas of change within the hippocampus associated with the BDNF met allele in BD. We found that hippocampus

volumes were significantly smaller in BD compared to HC subjects, and presence of the BDNF met allele was associated with smaller

hippocampus volume in both diagnostic groups. The BD subgroup who carried the BDNF met allele had the smallest hippocampus

volumes, and three-dimensional mapping identified these decreases as most prominent in left anterior hippocampus. These results

support effects of BD diagnosis and BDNF genotype on hippocampus structure and suggest a genetic subgroup within BD who may be

most vulnerable to deficits in hippocampus and may most benefit from interventions that influence BDNF-mediated signaling.
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INTRODUCTION

Histological and molecular studies in bipolar disorder (BD)
consistently demonstrate cellular abnormalities within
hippocampus. Postmortem studies report decreased hippo-
campal cell number and density in BD (Benes et al, 1998;
Bielau et al, 2005; Chambers and Perrone-Bizzozero, 2004;
Rosoklija et al, 2000), and magnetic resonance spectroscopy
studies demonstrate reduced levels of N-acetylaspartate, a
putative marker for neuronal integrity, in the hippocampus
of BD patients relative to healthy comparison (HC) subjects

(Bertolino et al, 2003; Deicken et al, 2003). Abnormal levels
of biochemical markers related to neuronal sprouting and
plasticity (Dowlatshahi et al, 2000; Fatemi et al, 2001;
MacDonald et al, 2006), cell signaling (Law and Deakin,
2001), and oxidative metabolism (Konradi et al, 2004) have
also been observed in the hippocampus in BD.
Consistent with cellular evidence for hippocampal

pathology, there is convergent behavioral data supporting
hippocampal dysfunction in BD. Impaired performance on
tests of episodic verbal memory, a measure of hippocampal
function, is one of the most frequently reported cognitive
deficits in BD (Cavanagh et al, 2002; Clark et al, 2001;
Deckersbach et al, 2004; Glahn et al, 2005; Pavuluri et al,
2006; van Gorp et al, 1999; Wolfe et al, 1987). These deficits
are present in children and adults with BD, and across
mood states. Their presence in youth, during euthymic
periods (Clark et al, 2001; Sweeney et al, 2000; van GorpReceived 5 April 2008; revised 30 May 2008; accepted 8 June 2008
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et al, 1999; Wolfe et al, 1987), and in unaffected
monozygotic twins of BD patients and non-twin siblings
of patients with BD (Gourovitch et al, 1999; Keri et al, 2001)
suggests hippocampal dysfunction may reflect an under-
lying vulnerability for BD.
Despite these observations, morphometric imaging studies

of hippocampus in BD fail to provide consistent evidence of
decreased volume. Several studies demonstrate significant
decreases in the volume of gray matter in individuals with BD
compared to HC patients (Frazier et al, 2005; Hauser et al,
1989; Noga et al, 2001; Strasser et al, 2005; Swayze et al,
1992). However, other studies report only a trend toward
smaller hippocampus volume in BD (Blumberg et al, 2003;
Brambilla et al, 2003), or no difference between BD and HC
groups (Altshuler et al, 2000; Chang et al, 2005; Chen et al,
2004a; Hauser et al, 2000; Strakowski et al, 1999). Variability
in these findings may reflect the presence of hippocampal
deficits only within particular demographic or clinical
subgroups as age, sex, and presence of psychotic symptoms
have all been associated with variability in hippocampal
volume in BD (Blumberg et al, 2003; Chambers and Perrone-
Bizzozero, 2004; Frazier et al, 2005; Sax et al, 1999; Strasser
et al, 2005; Velakoulis et al, 1999). It is also possible that
studies may vary in the proportion of individuals within the
samples carrying different polymorphic variants in genes
associated with hippocampus morphology.
Cellular studies suggest brain-derived neurotrophic

growth factor (BDNF) has the potential to influence
hippocampus morphology in BD. BDNF promotes neuron
growth and synapse formation (Maisonpierre et al, 1990;
Thoenen, 1995) and low BDNF levels are implicated
in hippocampal deficits in animal models of mood
disorders (Chen et al, 2001; Duman and Charney, 1999;
Duman et al, 1997; Nibuya et al, 1995; Santarelli et al,
2003). Decreased levels of BDNF protein have since
been detected peripherally during depressed and manic
episodes, and in brain tissue in postmortem studies of BD
(Cunha et al, 2006; Knable et al, 2004; Neumeister et al,
2005). In addition, research in rodents shows medications
used to treat BD increase neural BDNF levels (Bennett et al,
2000; Hashimoto et al, 2002), including specific increases
within hippocampus (Frey et al, 2006; Fukumoto et al,
2001).
The val66met BDNF polymorphism is a functional

variation associated with deficiencies in intracellular
trafficking and activity-dependent release of BDNF protein
(Chen et al, 2004b; Egan et al, 2003). This allele is also
associated with impaired episodic memory, decreased
hippocampus recruitment and decreased hippocampus
volume in HC groups, major depression, and schizophrenia
(Bueller et al, 2006; Frodl et al, 2007; Hariri et al, 2003;
Pezawas et al, 2004; Szeszko et al, 2005). In this study we
tested the hypotheses that the BDNF val66met variant would
influence hippocampus volumes in both HC and BD study
groups, and individuals with BD who carry at least one copy
of the met allele (val/met or met/met genotype) would have
the smallest hippocampus volumes compared to BD val/val
homozygotes and HC subjects. We also employed a
technique to evaluate three-dimensional (3D) hippocampus
maps in an effort to localize the areas of change within
hippocampus in BD most strongly associated with the
BDNF val66met polymorphism.

METHODS

Subjects

Subjects included 20 adults with BD (11 female patients: age
21–56 years; race: 18 European Americans; 2 other) and 18
HC participants (12 female patients: age 18–58 years; race:
13 European Americans; 3 African Americans; 2 other).
Subjects with BD included 12 val/val homozygotes and 8
‘met carriers’ (seven individuals heterozygous for the met
allele and one met/met homozygote). In the HC group, 12
subjects were homozygous for the val allele and 6 subjects
were met carriers (all heterozygous for the met allele). Study
participants were recruited through the Veterans Affairs
Connecticut Health Care System, West Haven; the Yale
School of Medicine, New Haven, CT; and practitioners in
the community or from advertisement in local newspapers.
All subjects provided written, informed consent for
participation in this study protocol as approved by the
Yale School of Medicine and Department of Veterans
Affairs institutional review boards.
Presence or absence of DSM-IV Axis I disorders was

confirmed using the Structured Clinical Interview for DSM-
IV Axis I Disorders, version 2.0 (First et al, 1995). None of
the participants had a significant medical or neurologic
illness, history of loss of consciousness greater than 5min,
or active drug or alcohol dependence. HC subjects also
lacked a personal history of an Axis I disorder.
Mean age of BD onset, as defined by subject report of the

first incidence of mood symptoms to satisfy DSM-IV
criteria for a depressive or manic/hypomanic episode, was
21 years (SD¼ 8 years, range¼ 11–35 years). Mean length of
BD illness duration was 18 years (SD¼ 10 years; range¼
2–40 years). Five (25%) of the BD subjects had experienced
past psychotic symptoms that occurred within the context
of a manic episode. None of the subjects were psychotic at
the time of scan. Two (10%) of the BD subjects had a history
of panic disorder and 14 (70%) had a history of substance
abuse or dependence (including alcohol). All were in
remission for at least 1 year (range¼ 1–27 years), with the
exception of one subject who was in remission for 5 months.
Average length of time in remission was 11 years. Five
(25%) of these subjects had a history of alcohol dependence
and 2 had additional comorbid substance dependence
(1 cocaine and 1 polysubstance dependence). One subject
had a history of cannabis dependence. An additional 8 (40%)
BD subjects had a history of substance abuse (4 alcohol and
cannabis, 2 alcohol only, 1 cannabis only and 1 abused
multiple substances). Eight (40%) of the BD subjects met past
criteria for rapid cycling. Six (30%) of the subjects were
euthymic at the time of scan, 8 (40%) were depressed, and 5
(25%) were manic or hypomanic. Six (30%) of the BD
subjects were unmedicated at the time of scan. Of the
remaining 13 subjects, 5 (25%) were prescribed lithium salts,
8 (40%) an anticonvulsant, 6 (30%) an atypical antipsychotic,
6 (30%) an antidepressant, and 1 (5%) levothyroxine.

Genotyping

Blood was collected by venopuncture and frozen at �201C.
Samples were thawed and DNA extracted using Puregene
kits (Gentra, Minneapolis, Minnesota). The BDNF gene
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polymorphism at position 196 (codon 66), G/A (val/met)
was identified using an ABI TaqMan assay (Applied
Biosystems, Foster City, California) (Shi et al, 1999).

Acquisition and Processing of Magnetic Resonance
Images

Magnetic resonance imaging (MRI) scans were obtained
using a single 1.5-T scanner (GE Signa; General Electric,
Milwaukee, Wisconsin). Head position was standardized
using canthomeatal landmarks and image parameters set at
a 3D sagittal spoiled gradient echo sequence (repetition
time, 24ms; echo time, 5ms; flip angle, 45o; frequency
encoding superior/inferior; no wrap; 256� 192 matrix; field
of view, 30 cm; two excitations; slice thickness, 1.2mm; and
124 contiguous slices).

Hand-tracing of hippocampus region of interest. Prior to
tracing of the hippocampus, half of the brain images were
flipped in left–right orientation. Personnel blind to subject
diagnosis and left–right brain orientation performed the
hippocampus delineations. Methods for stripping the skull
and segmenting the brain are previously described (Blum-
berg et al, 2003). Total brain volume (TBV) was calculated
as volume of cerebral gray matter plus white matter with
interrater intraclass correlation coefficients of 0.999, as
assessed on 10 scans. The hippocampus was defined by
manual tracing performed by one of two trained research
personnel whose interrater intraclass reliability coefficients
were 0.924 for left hippocampus and 0.902 for right
hippocampus traced on 10 brains. Tracings were performed
in the coronal plane according to methods previously
described (Blumberg et al, 2003; Kates et al, 1997; Peterson
et al, 2001). Briefly, the anterior of the hippocampus was
defined by the slice at which the temporal horn shifts from a
lateral to superior position in relation to the hippocampus.
The posterior boundary was defined by the slice in
which the splenium of the corpus callosum begins to join
the fornix. Final tracings were confirmed in orthogonal
views.

Three-dimensional mapping of hippocampus morphology.
Three-dimensional mapping of the hippocampus was
performed using an extended robust point matching
(RPM) nonrigid registration algorithm (Duncan et al,
2004; Papademetris et al, 2003) that is part of the Yale
BioImage Suite image analysis package (Papademetris et al,
2006). First, all hippocampal tracings were registered to that
of a single subject using RPM. An average transformation
from all subjects was then used to warp the single subject’s
right and left hippocampus to generate new synthetic
hippocampus tracings whose shape and size were effectively
means of the data set. All original subjects’ hippocampus
tracings (N¼ 38) were then registered to these templates
using RPM. Final registrations were verified visually for
accuracy, and a map of local expansion or contraction
created based on the determinant of the Jacobian of the
displacement field generated by each registration (Staib
et al, 2006). This analysis produced a Jacobian map where
each voxel had a value representing the local volume change
required to map an individual subject to the mean template
(ie 1¼ no volume change, 41¼ individual subject is larger

than the template, and o1¼ individual subject is smaller
than the template). These Jacobian maps were checked to
ensure transformations were free of singularities (ie |J|o0).

Statistical Analyses

Hippocampus region of interest analyses. Statistical
analyses for region of interest (ROI)-based hippocampus
tracings were performed using SAS software, version 9.1
(SAS Institute Inc., Cary, NC). All subjects (N¼ 38) were
included in a linear mixed model analysis with group (BD vs
HC) and BDNF genotype (val/val vs met carriers) (Egan
et al, 2003; Hariri et al, 2003) as the between-subjects
factors. Hemisphere (left vs right) was included as a within-
subjects exploratory factor and all two- and three-way
interactions were tested. Subject was used as the clustering
factor. Age and sex were included as covariates based on
previous reports implicating these factors in hippocampus
volume (Blumberg et al, 2003; Frazier et al, 2005; Pruessner
et al, 2001). TBV was included as a covariate to account for
general scaling effects. Least square (LS) means were
calculated from the mixed model for hippocampus volume
and plotted to interpret effects of diagnosis and genotype
(Figure 1).
Post hoc analyses were conducted to explore potential

main effects of clinical variables within the BD group,
including illness onset or duration, history of psychosis,
history of substance abuse or dependence (treated as a
dichotomous variable), rapid cycling, mood state, presence
or absence of medications at the time of scan, and effects of
individual classes of psychotropic medications on hippo-
campus volumes in BD.

Three-dimensional mapping of hippocampus morphology.
Three-dimensional mapping methods were used to localize
effects of BDNF genotypes within BD by performing two-
sample t-tests comparing BD val/val homozygotes with BD
met carriers at all hippocampus voxels. These analyses were
performed using the Yale BioImage Suite software package
(www.bioimagesuite.org) with morphometric Jacobian

Figure 1 The graph displays LS means and standard errors for
hippocampus volumes by BDNF genetic variation and diagnosis. Volumes
were reduced significantly in association with the presence of the met allele
and with BD diagnosis. Individuals with BD who carried the BDNF met allele
had the smallest hippocampus volumes. Sample sizes for each group are as
follows: HC val/val N¼ 12, HC met (val/met genotype) N¼ 6, BD val/val
N¼ 12 and BD met (val/met and met/met) N¼ 7. BD, bipolar disorder;
BDNF, brain-derived neurotrophic growth factor; LS, least square.
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values as the dependent variables. Significant localized
effects of BDNF genotype were plotted on a 3D rendering of
the mean of the hippocampus tracings for all participants.

RESULTS

There were no significant differences in sex or genotype
distribution between diagnostic groups. There was a
significant difference in mean age between diagnostic
groups as the HC group contained significantly younger
subjects than the group with BD (MHC¼28, SD¼ 12;
MBD¼40, SD¼ 9; po0.001). Within the BD group, met
carriers did not differ from val/val homozygotes on any of
the clinical variables measured.
The ROI analyses revealed significant main effects of both

genotype (F1,31¼ 13.3; po0.001) and group (F1,31¼ 8.1;
po0.008) on hippocampus volume. Carriers of the BDNF
met allele had significantly smaller LS mean hippocampus
volumes than individuals homozygous for the val allele
(LSmeanmet¼ 2433, SEmet¼ 115; LSmeanval¼ 2950, SEval¼
86). In addition, the BD group demonstrated smaller
hippocampus volumes than the HC group (LSmeanBD¼
2458, SEBD¼ 100; LSmeanHC¼ 2925, SEHC¼ 100). BD met
carriers had the smallest hippocampal volumes compared to
BD val/val homozygotes and HC subjects (LSmeanHCval¼
3166, SE¼ 134; LSmeanHCmet¼ 2683, SE¼ 178; LSmeanBDval¼
2734, SE¼ 125; LSmeanBDmet¼ 2181, SE¼ 149) (Figure 1).
The ROI analyses of genotype and group remained
significant using only the subgroup of European-American
subjects (po0.001 and po0.01, respectively). Individual
subject data points are illustrated in Supplementary
Figure 1. The interaction between genotype and group was
not significant. There were also no significant main effects
of age, sex, hemisphere, or any of the clinical variables
explored on hippocampus volumes (p40.12 for all ana-
lyses).
Three-dimensional morphological mapping demon-

strated localized decreases in hippocampus volume in BD
met carriers compared to BD val/val homozygotes within
the left anterior hippocampus where two regions of
difference were evident (po0.05, uncorrected). One region
contained an area that survived significance of po0.0005
(Figure 2).

DISCUSSION

In this study, adults with BD had significantly smaller
hippocampus volumes than HC subjects. This decrease in
volume is consistent with observed reductions in cellular
number and density in postmortem studies of hippocampus
in BD. In addition, presence of the BDNF met allele was
associated with reduced hippocampus volume in both HC
and BD samples. Hippocampus volume was smallest in the
individuals with BD who carried the BDNF met allele, as
compared to HC subjects and BD val/val homozygotes. We
suggest the BDNF met allele may function as one of several
factors that, along with a diagnosis of BD, put the
hippocampus beyond a threshold for normal structure
and function. Thus, the subgroup with BD that carries the
met allele may be a subgroup most vulnerable to
hippocampus-related deficits.
The effects of the BNDF met allele in BD were localized to

left anterior hippocampus. This finding is consistent with
the neurovegetative, emotional, and cognitive symptoms
associated with this disorder. Anterior hippocampus and its
nonhuman primate analogue ventral hippocampus (Jay and
Witter, 1991; Sasaki et al, 2004) have substantial connec-
tions with the hypothalamic–pituitary–adrenal (HPA) axis,
amygdala, and prefrontal cortex that are implicated in the
above symptoms (Bannerman et al, 2004). Anterior
hippocampus activity has been associated with modulation
of the HPA axis (Aihara et al, 2007; Colla et al, 2007) and
hippocampus neurotrophin expression has been proposed
to directly mediate this association (Uys et al, 2006).
Behavioral studies demonstrate specialization of ventral or
anterior hippocampus in select memory functions in
rodents and in both human and nonhuman primates
(Colombo et al, 1998; Dolan and Fletcher, 1999; Kjelstrup
et al, 2002; Sinnamon et al, 1978; Stevens and Cowey, 1973;
Strange et al, 1999). Anterior hippocampus may also be
associated with anxiety-related behaviors, such as those
seen in post-traumatic stress disorder, which demonstrate
reductions in anterior hippocampus activity and volume
(Etkin and Wager, 2007; Vythilingam et al, 2005). Differ-
ences in anterior hippocampus volume have also been
associated with schizophrenia (Bilder et al, 1995; Narr et al,
2004; Pegues et al, 2003). Together, these findings raise
questions as to whether individuals with BD who have
decreased anterior hippocampus volume might represent a
clinically distinct subgroup within the heterogeneous
presentations of BD. One might expect these individuals
to demonstrate abnormalities related to anterior hippo-
campus-based circuitry, including HPA dysfunction, mem-
ory impairment, and symptoms of anxiety or psychosis.
This spectrum of symptoms may reflect a phenotypic
presentation that exists across psychiatric disorders de-
monstrating a gene-related neuroanatomical abnormality.
Indeed, decreases in hippocampus volume in association

with the BDNF met allele are not specific to BD. They have
been reported in major depression (Frodl et al, 2007) and
schizophrenia (Szeszko et al, 2005). These studies, in
addition to our current findings, suggest the BDNF met
allele may be associated with hippocampus-related pheno-
typic features common to several psychiatric diagnoses.
Further investigation into BDNF-mediated effects may help
parse the heterogeneous features of these disorders, as well

Figure 2 This image demonstrates three-dimensional morphometric
mapping of regions of significant difference in BD BDNF met carriers
compared to BD BDNF val/val homozygotes (po0.05, uncorrected). In the
left anterior hippocampus, in addition to a small area of decreased volume
(small arrow), there was a more prominent area of decreased volume that
included a region at the level of significance of po0.0005 (indicated by the
large arrow). BD, bipolar disorder; BDNF, brain-derived neurotrophic
growth factor.
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as suggest mechanisms that underlie their common
symptoms.
Variation in BDNF genotype may have contributed to

differences in hippocampus volume findings among
previous MRI studies in BD (Blumberg et al, 2003;
Brambilla et al, 2003; Chen et al, 2004a; Dickstein et al,
2005; Frazier et al, 2005; Hauser et al, 2000; Noga et al, 2001;
Strakowski et al, 1999). Some studies report the BDNF val
allele may be preferentially transmitted in BD (Neves-
Pereira et al, 2002), although this finding is not universally
reported (Zhang et al, 2006). There is also evidence that the
BDNF met and val alleles may be associated with clinical
subgroups within BD (Geller et al, 2004; Green et al, 2006;
McIntosh et al, 2007), supporting the hypothesis presence
of the val or met alleles may modify different phenotypes
within this disorder. McIntosh et al (2007) report greater
decreases in temporal lobe volumes in BD over a 4-year
interval in association with the BDNF met allele, suggesting
BDNF variation has dynamic effects on hippocampus
volume during adulthood. Although duration of affective
illness (Sheline et al, 1999), presence of psychotic symptoms
(Strasser et al, 2005), age or stage of development
(Blumberg et al, 2003; Frazier et al, 2005; Pruessner et al,
2001) and sex (Frazier et al, 2005; Pruessner et al, 2001) may
also influence hippocampus volume, we did not detect
significant influences of these factors in this study.
However, the group sizes may have limited our power to
detect such effects. We also did not detect significant effects
of history of substance abuse or dependence on hippocam-
pus volumes, although power may have been limited to
detect such effects. Differences in anterior hippocampus
volume in association with alcohol dependence have been
previously reported (Sullivan et al, 1995). Although this
study found no association between lifetime alcohol
consumption and hippocampus volume, it is possible that
alcohol exposure could have influenced our findings.
Our results may have implications for clinical interven-

tions in the treatment of BD as serotonergic antidepressant
medications, mood stabilizers such as lithium and valproic
acid, and nonpharmacological treatments such as exercise
have been shown to upregulate BDNF and its associated
neurotrophic effects in hippocampus (Duman and Mon-
teggia, 2006; Frey et al, 2006; Fukumoto et al, 2001; Malberg
et al, 2000; Manji et al, 2000; Santarelli et al, 2003). Lithium
has also been associated with increases in hippocampus
volume in persons with BD (Bearden et al, 2008; Yucel et al,
2007), including increases specifically within the hippo-
campus head (Yucel et al, 2008). These reports suggest
persons with BD who carry the BDNF met allele might
benefit most from treatments mediated by BDNF-related
mechanisms. However, it is also possible that BDNF met
carriers may be more resistant to these treatments if ability
to mount a BDNF-related response is diminished in these
individuals. Since the BDNF met allele has been associated
with deficits in recovery from stress (Gould et al, 1997,
1998; Magarinos et al, 1996), it may be alternative strategies,
such as stress and anxiety reduction, may be needed to
reverse anterior hippocampus abnormalities. In addition,
interaction between BDNF and serotonin proteins are
implicated in neural development and plasticity (Duman,
2002; Peng et al, 2008; Sairanen et al, 2005). This suggests
interaction of BDNF- and serotonin-related genes, such as

the serotonin transporter gene polymorphisms (5-HTTLPR)
may modulate hippocampus morphology in mood dis-
orders. Sample sizes limited investigation into interactions
between BDNF and 5-HTTLPR in this study, however future
study of these interactions is warranted.
In sum, this study of the val66met polymorphism

provides preliminary evidence that variation in BNDF has
the potential to influence hippocampus structure in BD, and
carriers of the met allele may be a subgroup within BD more
vulnerable to hippocampus-related deficits. Potential influ-
ence of the BDNF val66met polymorphism on hippocampus
provides one model of a molecular mechanism that may
contribute to clinical heterogeneity within BD. Improved
understanding of the role of BDNF in BD may help to
identify a subset of patients who would most benefit from
interventions that can target BDNF-related mechanisms and
modify BDNF expression.
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