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Linkage Analysis of Fifty-Seven Microsatellite 
Loci to Bipolar Disorder 
Pablo V. Gejman, M.D., Maria Martinez, Ph.D., Qiuhe CaD, M.D., Eitan Friedman, M.D., 
Wade H. Berrettini, M.D., Ph.D., Lynn R. Goldin, Ph.D., Panayiota Koroulakis, 
Chris Ames, Melissa A. Lerman, and Elliot S. Gershon, M.D. 

lTIt authors' goal was to screen for genetic linkage with 
mghly infonnative deoxyribonucleic acid (DNA) 
Urosatellite markers on a series of moderately sized 
HDrth American bipolar disorder (BP) pedigrees. These 
IP pedigrees were genotyped with 57 short tandem
rrptIlt polymorphic systems (microsatellites) that were 
tcymIltiClllly amplified from genomic DNA. We did not 
,., significant evidence for genetic linkage. We found 
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A body of epidemiologic studies implies that there is 
l&metic component that confers susceptibility to bipo
IIrdisorder(BP) (Nurnberger et al. 1986). However, ex
lllination of the distribution of illness in families shows 
IhIt it is improbable that a single defective gene com
pletely determines whether a person shows the disease 
phenotype, because the mode of genetic transmission 
afBP does not follow simple Mendelian rules. Several 
plausible theories explaining the pathophysiology of 
IPhave been proposed, but without full support from 
aperimental evidence, and it may be argued that the 
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isolated LOD scores greater than 2 on chromosome 1 at 
two loci in individual pedigrees. Simulation studies for 
multiple analyses under the assumptions of linkage and 
non linkage were performed. The simulations show that 
LOD scores greater than 2 could be expected even when 
linkage is absent. Significance levels need to be considered 
carefully in systematic linkage studies. [Neuropsycho
pharmacology 9:31-40, 1993J 

fIeld lacks solid candidate genes (Nurnberger et al. 
1986). In this context, identifIcation of susceptibility 
genes by the use of genetic linkage analysis strategies 
that do not require an a priori knowledge of the patho
physiology of BP become an attractive research alter
native. Furthermore, genetic linkage methods can de
tect a susceptibility gene when the exact manner of 
transmission is not known (Clerget-Darpoux et al. 
1986). The effects of rnisspecifIcation of genetic param
eters in pairwise analysis is generally modest: linkage 
is detected but the recombination fraction is biased 
(Clerget-Darpoux et al. 1986). The magnitude of bias 
will depend upon the true and the assumed values of 
the genetic parameters. 

Berrettini et al. (1991a) described a series of 21 
pedigrees with BP. Genetic linkage of illness in this ped
igree series has been examined in previously published 
papers for 107 markers on chromosomes 1, 10q, llq, 
13, 15, and 17 (Berrettini et al. 1991b), for 24 markers 
on chromosome 5 in 14 of these pedigrees (Detera
Wadleigh et al. 1992), and for fI.ve markers on Xq27-28 
in a subset of families in which segregation of BP is con
sistent with X-chromosome transmission (Berrettini et 
al. 1990; Gejman et al. 1990), with classic restriction frag
ment length polymorphism (RFLP) markers used for 
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nearly all loci. Here we report linkage analyses of 57 
additional markers, all micro satellites, to BP. 

The power of this or any pedigree series to detect 
linkage, when it exists, is a function of the pedigree 
structures, the complexity of genetic transmission, the 
proportion of cases linked, and the informativeness of 
the marker loci. Informativeness refers to the genetic 
variation of the markers. It is commonly measured by 
the frequency of heterozygotes at a locus and expressed 
in terms of heterozygosity. High heterozygosity values 
(greater than 70%) permit a more complete genetic anal
ysis of the affected families because the segregation of 
the disease and marker can be analyzed in a larger num
ber of meioses. Deoxyribonucleic acid (DNA) markers 
with high heterozygosity are specially useful when the 
number of pedigrees that can be studied is limited, as 
is often the case. 

The polymerase chain reaction (PCR) allows inex
pensive and rapid genotyping of a large number of in
dividuals with minimum effort. Polymerase chain reac
tion is used to enzymatically amplify marker loci with 
high-average heterozygosity, dispersed throughout the 
genome. These have recently become available through 
the discovery of dinucleotide tandem repeats (micro
satellites) of the form (dC-dA)n·(dG-dT)n (Weber and 
May 1989). These sequences display highly variable 
numbers of dinucleotide repeats, which show up on 
denaturing polyacrylamide gels as length polymor
phisms. 

The recent availability of micro satellite markers, 
which might reasonably be expected to be randomly 
dispersed, offer an opportunity to add signiftcantly to 
the number of markers mapped in this series of 
pedigrees. We decided to exploit the opportunity as a 
"fIrst pass" with later incorporation of data into system
atic chromosomal scanning for susceptibility loci when 
this is appropriate, such as when gaps in the known 
genetic map can be ftlled with these markers. In pub
lished papers, linkage analysis to microsatellites located 
in chromosomes not yet scanned can be considered a 
"ftrst pass." 

Genetic linkage in this pedigree series has been pre
viously examined systematically using mapped mark
ers on several chromosomes. Linkage analyses to 
microsatellites located in these chromosomal regions 
should be considered a "second pass" that can provide 
more information at particular loci or ftll in gaps in the 
genetic maps. An example of a successful "second pass" 
tactic is the detection of linkage between a microsatel
lite locus (045171) and facioscapulohumeral dystrophy 
disease in the distal long arm of chromosome 4 after 
a large portion of the genome had been excluded by 
using traditional DNA markers (Wijmenga et al. 1990). 
Linkage had not been previously detected because no 
markers were available in the region of linkage. 
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METHODS 

We have studied a series of moderately sized North 
American pedigrees, whose structures, ascertainment, 
diagnostic procedures, extension rules, and expected 
LOD scores in linkage analyses are described elsewhere 
(Berrettini et a1. 1991a). When a LOD score appeared 
positive (see below), we added the "right extension" 
(Kelsoe et a1. 1990) of the Old Order Amish BP pedi
gree 110 for additional information. 

Affection Status Models 

The following are affection status models of who is ill 
or well (Berrettini et a1. 1991a). Model 1: Either Bipolar 
I, Bipolar II with major depression, or schizo affective 
disorder. Model 2: Modell plus recurrent (more than 
1 episode) unipolar disorder. Model 3: Model 2 plus any 
of the following; nonrecurrent (one episode) unipolar; 
suicide; cyclothymic personality; Bipolar II with minor 
depression; unspecifIed functional psychosis, suicide, 
hypomania, anorexia, bulimia, other psychiatric disor
der (hospitalized), and schizophrenia. Persons with 
affective disorders associated with brain dysfunction, 
including cerebrovascular accident or brain tumor, are 
considered as phenotype unknown. 

For linkage analysis, persons considered affected 
only under model 3 were classifIed as unaffected when 
linkage calculations were performed for models 1 and 
2, and persons considered affected only under model 
2 were classifted as unaffected for the calculations for 
model 1. However, because the precise inheritance of 
the BP phenotype is not known with certainty, the affec· 
tion classiftcation models used by us should be consid· 
ered educated working hypotheses founded in epi· 
demiologic data. When LOD scores suggested possible 
genetic linkage, a variation of these models was fol
lowed: the phenotype of persons considered affected 
under a less stringent model was classifIed as unknown 
in the calculations. 

DNA Amplification and Electrophoresis 

Polymerase chain reaction was performed in a total vo� 
ume of 15 �l using approximately 0.15 �g of genomic 
DNA, 200 �mol each of adenosine triphosphate, guano
sine triphosphate, and thymidine triphosphate, 2.5 
�mol of cytidine triphosphate, 0.03 �Ci of cytidine 
triphosphate [o.-32]phosphate (3000 Ci/mmol), 5 prod 
of each primer, 50 mmol KCl, 10 mmol Tris (pH 8.3), 
1.5 mmol MgCh, 0.01% gelatin, 0.25 mmol spermi
dine, and 0.10 unit of Taq polymerase (Perkin Elmer 
Cetus). Typically, two sets of primers were included 
in each reaction (multiplexing). In a few experiments, 
only one set of PCR primers was used. Samples wet! 
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oyeriaid with 20 III of mineral oil and were processed 
duough 20 temperature cycles (denaturation, anneal
iIg, and extension) consisting of 50 seconds at 92°C, 
"seconds at 52°C, and 90 seconds at 72°e. In the last 
cycle, the extension step was lengthened to 4 minutes. 
FoIymerase chain reaction was performed in microti
I!rplates in a Techne thermo cycler (MW2). Polymer
a chain reaction aliquots were electrophoresed on 6% 
m 8% denaturing polyacrylamide DNA sequencing 
pis. Gel size standards were dideoxy sequencing lad
ders(M13mp18 template). Gels were fIxed, dried, and 
1II0radiographed for 1 to 4 days. Oligonucleotide 
primers were synthesized on a DNA synthesizer (Cy
mne Plus, Milligen/Biosearch, Millipore). 

Ceaotyping and Linkage Analysis 

Members of 19 families in the pedigree series had am
plified DNA arranged on a gel in a flxed order by fam
iy. Each autoradiogram was uniquely identifled with 
pRprinted labels. The bands were read independently 
.,two persons, and the readings recorded on the indi
aledcolumn on two separate sheets. We carefully ex
lllined the quality of each autoradiogram generated 
rill every experiment before deciding to include it in 
dlrdatabase of genotypes. If this flrst level of scrutiny 
as successfully passed, the two separate readings 
wreentered into a computer database that detects the 
fl'Sfnce of differences between the entries. Resolution 
II inconsistencies was done by reinspecting the au
lIndiograms, and in instances where they remained 
msolved, the genotypes (of individuals, sibships, or 
fIIIilies at a given locus) were considered unknown. 
Whenever a sample of genomic DNA was found to sys
Blatically give genotypes inconsistent with the rest 
ithe family, this batch was discarded and another one 
R5 obtained. 

A subset of seven families in which the segrega
IDn of BP is consistent with X-chromosome, transmis
IiIn(0016, 0024, 0065, 0068, 0278, and 0643) was typed 
lib the human X-linked gamma-aminobutyric acid-A 
mrptora3-subunit gene (see, Gejman et al. 1990; Ber
RIIini et aI. 1990 for description of families and absence 
cf male-to-male transmission). 

linkage analyses were performed with the LINK
ACE package version 5.03 (Lathrop et al. 1985). The 
lIWIIed genetic transmission model of disease was 
_ant with a susceptibility allele frequency of 0.01. 
Pmetrance values varied according to age: six suscep
Qityclasses were considered. Penetrances for disease 
pnrcarriers varied from 17% to 85%. It could be ar
prd that other genetic models should be examined be
_the mode of transmission of BP is unknown. Fam
&. in our sample were selected because they have a 
lise number of affecteds in successive generations. 
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Thus, the assumption of the dominant mode of in
heritance seems reasonable when screening markers 
for linkage. Other models may be analyzed in a future 
publication. The penetrance for noncarriers was set to 
vary from 0.001 to 0.01. This implies that the assumed 
rate of phenocopies increases with age and was differ
ent from the penetrances previously assumed (Berret
tini et al. 1991a). At young ages, the rate of pheno
copies is 22%, but at older ages the rate of phenocopies 
increases up to 37%. Our model, with some particular 
family structures that include affected individuals lo
cated in the higher phenocopy penetrances class, would 
lead to less extreme LaD scores than previously calcu
lated (Berrettini et al. 1991b). We assumed equal recom
bination in males and females for the initial analysis. 

LaD score calculations were done under the three 
affection status models, with recombination fractions 
(8) from 0 to 0.3. In a pedigree series such as ours, where 
heterogeneity may be present, we examined the total 
LaD score in pairwise analysis, followed by examina
tion of the individual LaD scores in each pedigree. 

RESULTS 

Table 1 shows the chromosomal location and the poly
morphism information content (PIC) of microsatellites 
used in these analyses and the total LaD scores under 
homogeneity at each locus (8 = 0, 8 = 0.10, and 8 = 

0.20). 
Although all individuals had DNA amplifled, not 

all persons yielded technically acceptable genotypes. 
An average of 261.2 individual genotypes (81 % of indi
viduals) per microsatellite system with a standard devi
ation of 67.6 were entered into the data base. A strict 
criterion for selecting data to be included in the calcu
lations accounts for the individuals who were not typed 
(see section on genotyping and linkage analysis). 
Twelve loci had more than 300 individuals genotyped 
(19 families typed per locus). Less than 100 individuals 
have been typed with one microsatellite system, 08587 
(87 individuals typed in six families). Between 110 and 
150 individuals were typed at seven loci (0175250, 
019547,019548,02572,0225156,045171, and 04574). 
We have excluded genetic linkage under homogeneity 
at most of the loci at a distance of 10 to 20 eM. 

We computed the power to detect linkage under 
heterogeneity using the program 5IMLINK (5mith 
1963; Ploughman and Boehnke 1989) for three differ
ent sample sizes corresponding to the number of indi
viduals actually genotyped in three representative ex
periments. We assumed the same genetic parameters 
as those used for the pairwise analyses and that half 
of the families had an illness gene linked to a marker. 
For a marker with PIC = 0.7 and 8 = 0.01, the power 



Table 1. Assumed Genetic Model of Disease* 

LOD Scores 

Regional PIC or Affection Recombination Fraction 
Locus Name Chromosome Localization Heterozygosity Status Model e = 0 e = 0.10 e = 0.20 

O1S103 1 0.78 1 -15.70 -3.98 -1.15 
2 -15.62 -1.93 0.83 

DlS104 1 lq21-q23 0.66 1 -6.44 -1.34 -0.02 

2 -15.01 -3.80 - 1.0 5 
CRP 1 lq2l-q23 0.53 1 -15.39 -5.13 -0.86 

2 -20.12 -4.53 -0.34 

DlS117 1 lq23-q25 0.77 1 -10.41 -3.79 -1.32 

2 -24.42 -8.68 -3.53 
D2S72 2 0.71 1 -9.15 -3.66 -1.74 

2 -7.99 -2.76 -1.21 
D3S196 3 0.68 1 -13.23 -3.39 -1.04 

2 -16.21 -3.91 -1.20 

D3S240 3 0.30 1 -1.58 -0.50 0.10 

2 -2.71 -1.10 -0.31 

GLUT2 3 3q26.1-q26.3 1 -14.35 -4.53 -1.54 
2 -17.45 -5.42 -2.22 

D4Sl74 4 0.86 1 -5.93 -1.08 -0.02 

2 -9.00 -0.97 0.70 

FABP2 4 4q28-q31 64% 1 -15.73 -5.89 -2.90 

2 -15.84 -4.41 -1.57 
D5Sl08 5 0.45 1 -3.09 0.03 0.56 

2 -6.25 -0.74 0.24 

D5S117 5 0.62 1 -8.10 -4.71 -2.32 

2 -15.53 -9.08 -4.39 

D5S118 5 0.48 1 -9.82 -2.26 -0.32 

2 -16.53 -4.10 - 1.0 3 
D5S119 5 0.50 1 -8.95 -3.06 -1.38 

2 -14.33 -4.83 -1.81 

D5S107 5 5q11.2-q13.3 0.78 1 -11.01 -3.80 -1.63 
2 -20.33 -6.23 -2.73 

CFSIR 5 5q33.3-34 0.85 1 -27.00 -8.96 -3.81 

2 -36.33 -12.65 -5.60 
D6S87 6 0.53 1 -9.16 -1.81 -0.31 

2 -18.84 -5.16 -1.67 
D7S435 7 0.53 1 -16.25 -5.32 -2.46 

2 -22.70 -5.55 -1.95 

D8S87 8 8p12 0.71 1 -3.38 -1.48 -0.33 

2 -4.96 -1.97 -0.33 

D8S84 8 8q12-q13 0.58 1 -18.05 -6.07 -2.60 
2 -20.75 -6.23 -2.21 

D9S43 9 0.74 1 -9.09 -1.60 -O.lIS 
2 -14.82 -4.80 -2.OS 

ASS 9 9q34 64% 1 -20.82 -6.28 -2.28 

2 -32.59 -9.37 -3.72 

010S89 10 0.71 1 -14.41 -3.61 -1.24 

2 -22.34 -5.97 -2.18 
D11S419 11 0.43 1 -6.31 -1.37 -0.10 

2 -8.92 -2.76 -0.99 

D11S35 11 11q22 0.79 1 -13.30 -3.71 -1.30 

2 -10.89 -1.63 -0.03 

CD3D 11 11q23 0.69 1 -16.22 -5.56 -2.11 

2 -19.18 -5.74 -1.99 

D11S420 1 1  11q23.3-q24 0.66 1 -14.62 -5.25 -2.39 
2 -19.15 -6.49 -2.93 

012S43 12 0.71 1 -13.83 -5.87 -3.111 

2 -20.39 -7.71 -3.91 

PLA2 12 0.73 1 -18.65 -5.70 -2.17 
2 -24.90 -7.80 -2.92 

IGFI 12 12q22-q24.1 0.53 1 -8.15 -2.97 - 1.51 
2 -9.42 -2.62 -1.04 

D13S71 13 0.67 1 -13.83 -5.87 -3.111 

2 -20.39 -7.71 -3.91 

FLTl 13 13q12 0.49 1 -5.39 -0.&3 0.(5 
2 -7.40 -0.55 0.49 

(continut'i 



Table 1. (continued) 

LOD Scores 

Regional PIC or Affection Recombination Fraction 
!«us Name Chromosome Localization Heterozygosity Status Model e = 0 e = 0.10 e = 0.20 

014543 14 14q24.3 0.72 1 -9.95 -3.22 -1.33 
2 -10.78 -3.42 -1.49 

015587 15 0.85 1 -13.01 -4.12 -1.68 
2 -17.23 -6.10 -2.29 

0165260 16 0.43 1 -7.53 -2.91 -1.36 
2 -9.97 -3.00 -1.34 

0165261 16 0.66 1 -12.21 -3.15 -0.49 
2 -15.15 -4.14 -1.21 

0165265 16 0.75 1 -10.04 -3.78 -1.29 
2 -18.32 -4.68 -1.48 

0165266 16 0.54 1 -10.69 -2.94 -0.67 
2 -15.24 -5.05 -1.88 

0165267 16 0.47 1 -12.73 -5.30 -2.67 
2 -16.17 -5.73 -2.57 

0175250 17 17q11.2-q12 0.82 1 -15.55 -5.56 -2.62 
2 -13.03 -4.43 -2.14 

MPO 17 17q21-23 0.45 1 -14.33 -4.70 -1.85 
2 -18.73 -7.19 -3.26 

018535 18 18q 0.65 1 -12.44 -4.05 -1.43 
2 -17.39 -4.97 -1.66 

019548 19 0.42 1 -4.61 -0.93 -0.13 
2 -7.21 -1.83 -0.54 

019549 19 19q12-q13.1 0.79 1 -20.64 -7.34 -3.37 
2 -31.04 -10.71 -5.04 

019575 19 19q12-q13.1 0.61 1 -12.21 -4.75 -2.1 
2 -22.78 -7.65 -3.5 

APOC2 19 19q12-q13.2 0.79 1 -10.63 -4.91 -2.35 
2 -19.72 -7.18 -3.4 

019547 19 19q13.1 0.69 1 -5.01 -2.33 -1.22 
2 -16.03 -4.55 -1.88 

D!JS32E 20 43% 1 -4.24 -1.84 -0.73 
2 -10.31 -2.83 -1.91 

1m527 20 20p12 0.64 1 -12.60 -2.5 -0.56 
2 -12.25 -3.29 -1.14 

(;NASI 20 20q13.3 58% 1 -10.52 -3.74 -1.37 
2 -11.93 -4.31 -1.55 

DZI5172 21 21q11.2 0.58 1 -21.52 -6.90 -2.54 
2 -26.09 -7.39 -2.38 

DlI5l3E 21 21ql1.2 0.69 1 -11.01 -3.80 -1.43 
2 -16.06 -4.46 -1.39 

Dl1S156 21 21q22.3 0.79 1 -17.19 -3.53 -0.46 
2 -27.27 -3.92 -2.13 

DlI5168 21 21q22.3 0.73 1 -8.50 -2.14 -0.61 
2 -14.68 -5.97 -2.84 

Dl2S156 22 0.64 1 -4.44 -2.28 -1.27 
2 -6.34 -2.65 -1.54 

13 22 0.57 1 -10.69 -3.04 -0.78 
2 -14.40 -4.02 -1.2 

�A-A X Xq28 0.29 1 -8.16 -2.16 -0.75 
2 -10.86 -1.59 -0.85 

• Oominant transmission, susceptibility allele frequency of 0.01, variable age of onset, with a maximum penetrance value of 85% for 
iliriduals age 50 carrying either one or two susceptibility alleles, and 1% maximum penetrance for those who do not. 
Wussume equal recombinations in males and females for the initial analysis. e is recombination fraction. Heterozygosity is expressed 

II percentage. 
IIiaosatellite mapping information and informativeness was obtained from: Buckle et al. 1989; Decker et al. 1992; Dracopoli et al. 1991; 

� et aI. 1991; Granqvist et aI. 1991; Guo et al. 1990a, b; Hazan et al. 1992; Hicks et aI. 1991; Kwiatkowski et al. 1992; Lewis et al. 
.. Utt et al. 1990; Luo et aI. 1990; Martinez and Goldin 1990; Mills et aI. (in press); Patel et al. 1991; Patterson et aI. 1990; Polymeropou-
lutal. 1990a,b; 1991a-c; Sharma and Litt 1991; Sharma et al. 1991a,b; Wang and Weber (1992); Weber and May 1989; 1990a-g; Weber 
at 1990a-q; Wilkie et aI. 1992; Yamada et aI. 1991; Yuille et al. 1990. 
(II' = (-reactive protein gene; GLUT2 = human liver/islet glucose transporter gene; FABP2 = human intestinal fatty acid binding 

*' gene; CFS1R = human c-fms proto-oncogene for the CFS-1 receptor; ASS = human argininosuccinate synthetase gene; CD3D 
•• n gene encoding the delta subunit of the CD3 T-cell receptor complex; PLA2 = human pancreatic phospholipase A-2 gene; IGFl 
.iIIuIin-like growth factor 1 gene; FLT1 = human fms-related tyrosine kinase gene; MPO = light and heavy chains of myeloperoxidase 
�tein gene; APOC2 = apolipoprotein crr gene; GNAS1 = human Gs-alpha subunit gene; SIS = human c-sis proto-oncogene; 
ioIIA-A = human X-linked GABA-A receptor a3-subunit gene; PIC = polymorphism information content. 
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to detect linkage for sample sizes of genotyped indi- 1482 at e = 0 had Zmax (maximum LOO score) = 1.99 
viduals of 194, 244, and 305 is 69%, 80%, and 90%, and 2.39 under models 1 and 2, respectively. These were 
respectively. As the recombination fraction increases the highest LOO scores for an individual family in the 
or the proportion of linked families decreases, the pedigree series. Other positive LOO scores in individual 
power to detect linkage is lower. pedigrees on chromosome 1q were noted: pedigree 

The highest maximum LOO scores for the whole 1505, locus 015117, Zmax = 2.1 and 0.52 under models 
series of pedigrees were at 015103 with affection sta- 1 and 2, respectively; family 1512, locus CRP, Zmax = 

tus model 2 at 0.3 recombination fraction (1.19); LOO 0.17 and 1.58 under models 1 and 2. Other analyses of 
scores are negative with models 1 and 3. loci on the long arm of chromosome 1 did not reveal 

For this locus, 015103, as shown in Table 2, family similar positive scores (Table 3). Our two-point scores 

Table 2. LOD Scores for Locus DISI03 Affection Status Models 1 and 2 

Recombination Fraction 

Family No. 0.0 0.01 0.05 0.1 0.15 0.2 0.3 0.4 

Model 1 
16 -1.32 -1.24 -0.96 -0.69 -0.49 -0.34 -0.14 -0.03 
48 -1.73 -1.32 -0.78 -0.49 -0.32 -0.20 -0.07 -0.02 
65 0.10 0.10 0.07 0.05 0.03 0.02 0.Q1 0.00 
68 -1.69 -1.41 -0.90 -0.58 -0.38 -0.24 -0.08 -0.01 
92 -1.49 -1.16 -0.69 -0.45 -0.32 -0.24 -0.13 -0.07 

137 -2.70 -2.26 -1.45 -0.95 -0.64 -0.43 -0.17 -0.04 
278 -2.51 -2.28 -1.63 -1.20 -0.94 -0.76 -0.48 -0.23 
441 0.04 0.04 0.03 0.02 -0.00 -0.02 -0.02 -0.01 
488 0.75 0.73 0.64 0.53 0.42 0.33 0.17 O.� 
643 -0.41 -0.40 -0.35 -0.29 -0.24 -0.18 -0.09 -0.02 

1442 -0.90 -0.86 -0.58 -0.27 -0.07 0.04 0.10 0.04 
1482 1.99 1.94 1.76 1.54 1.31 1.08 0.63 0.24 
1483 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 
1484 0.55 0.67 0.86 0.87 0.82 0.73 0.50 0.26 
1505 -1.12 -0.88 -0.49 -0.29 -0.18 -0.11 -0.04 -0.01 
1512 -2.73 -2.12 -1.37 -0.94 -0.66 -0.46 -0.19 -O.IE 
1520 -1.11 -0.78 -0.29 -0.04 0.09 0.14 0.14 O.� 
1536 -1.68 -1.56 -1.22 -0.93 -0.73 -0.58 -0.35 -0.18 
9000 0.13 0.15 0.18 0.18 0.17 0.14 0.08 0.02 

Total -15.82 -12.67 -7.17 -3.94 -2.14 -1.06 -0.12 0.00 

Model 2 
16 -1.32 -1.24 -0.96 -0.69 -0.49 -0.34 -0.14 -0.03 
48 -2.15 -1.82 -1.06 -0.60 -0.34 -0.18 -0.03 0.01 
65 -1.46 -0.54 -0.10 0.09 0.14 0.15 0.10 o.m 
68 -0.61 -0.36 0.03 0.19 0.25 0.24 0.15 O.IE 
92 -3.28 -2.80 -2.23 -1.83 -1.46 -1.12 -0.58 -0.23 

137 -2.70 -2.26 -1.45 -0.95 -0.64 -0.43 -0.17 -0.04 
278 -1.11 -1.00 -0.54 -0.19 0.01 0.13 0.21 0.15 
441 0.42 0.41 0.38 0.33 0.26 0.20 0.07 0.00 
448 0.75 0.73 0.64 0.53 0.42 0.33 0.17 0.1» 
643 -1.82 -1.64 -1.19 -0.84 -0.60 -0.41 -0.17 -0.04 

1442 -1.46 -1.10 -0.58 -0.27 -0.08 0.02 0.08 0.03 
1482 2.39 2.34 2.15 1.90 1.64 1.39 0.86 0.36 
1483 0.06 0.06 0.05 0.04 0.03 0.02 0.01 0.00 
1484 0.42 0.55 0.75 0.78 0.73 0.65 0.46 0.24 
1505 -1.28 -1.21 -0.79 -0.44 -0.25 -0.14 -0.04 -0.01 
1512 -1.43 -0.35 0.22 0.38 0.40 0.37 0.22 0.1» 
1520 0.36 0.40 0.51 0.55 0.54 0.50 0.32 0.11 
1536 -1.77 -1.72 -1.42 -1.08 -0.83 -0.64 -0.39 -0.19 
9000 0.97 0.96 0.87 0.76 0.65 0.53 0.31 0.1l 

Total -15.02 -10.72 -4.73 -1.35 0.41 1.28 1.47 O.� 

Pairwise Analysis of BP and DISI03. 
Pedigree 9000 is Old Order Amish 110 right extension (Kelsoe et al. 1990). 
See Table 11egend for genetic parameters. 
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Table 3. Simulation of Maximum Values of 
lOD Score with Multiple Analyses 

No Linkage 
(9 = 0.5) 

Linkage 
(9 = 0.01) 

WD Scores F1505 F1482 F1505 F1482 

Modell 
Average Zmax 0.20 0.35 1.21 1.92 
P (2max > 2) 0.35% 0.7% 22.3% 43.8% 
P (2max > 3) 0.15% 0.5% 0.0% 20.4% 

Model 2 
Average Zmax 0.25 0.40 1.36 2.53 
P (2max > 2) 0.4% 0.4% 28.2% 61.0% 
P (Zmax > 3) 0.0% 0.25% 0.0% 36.0% 

Frequency of maximum LOD score (Zmax) for families 1482 and 
1S(5 under disease Model 1 and 2, when there is no linkage (9 = 
05) and true linkage (9 = 0.01) based on 2000 replicates. 

between all markers on lq in our data are consistent 
with the published map order as described by Dracopoli 
et aI. (1991) (results not shown). 

When penetrance was decreased to 50% for locus 
015103, the Zmax for all the families was 0.37 at 8 = 

Oll for model 1 and 1.32 at 8 = 0.25 for model 2. In 
lhesame analysis, family 1482 at 8 = 0 had Zmax = 1.77 
md 2.34 under models 1 and 2, respectively. 

In some analyses at this locus, individuals affected 
lIIder a lower classifIcation model (model 1 is highest 
lid model 3 is lowest) were considered unknown. The 
1- for all the families was 0.001 at 8 = 0.40 and 1.32 
1t8 = 0.25 under models 1 and 2, respectively. 

We have also analyzed the Old Order Amish pedi
plIO with D1Sl03 and D1S117. LOD scores were 
llightly positive at D1Sl03 under model 1 and model 
2and negative at D1S117 (see Table 2). When linkage 
malysis of the Amish pedigree is added the maximum 
LOD score (under homogeneity) for the whole series 
Gfpedigrees at D1Sl03 is 1.47 at 8 = 0.30 recombina
an fraction. 

Genetic heterogeneity at D1Sl03 was tested using 
if admixture test (one-sided test and type I error of 
sr.). As previously described by Martinez and Goldin 
�), we have modifIed the MLINK program (V5.03) 
"maximize the LOD score as a function of 8 and of 
6eproportion of linked families (heterogeneity rate), 
c.Analysis of linkage under heterogeneity (Amish ped
lpenot included) revealed a maximum LOD score of 
11 at 9 = 0.10, a = 0.35 (heterogeneity test Xt = 2.35, 
, . 0.063), affection status model 2, and a maximum 
100 score of 0.75 at 8 = 0, a = 0.10, (heterogeneity 
bt xi = 3.45, P = .031), affection status model 1. 
Cienetic heterogeneity is thus (weakly) supported, but 
Pidence for genetic linkage is not signi&cant. 

For families 1482 and 1505, we estimated the fre
� of positive maximum LOD scores greater than 
Zlilat could arise by chance alone and when there is 
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a true tight linkage between the marker and the trait 
locus. Using the SLINK program (Ott 1989; Weeks et 
a1. 1990),2000 replicates of each family were simulated 
under disease models 1 and 2. We have considered a 
marker locus with four alleles equally frequent either 
unlinked (8 = 0.5) or tightly linked (8 = 0.01) to the 
disease locus and maximized the individual pedigree 
LOD scores (Table 3). We have investigated the possi
bility that multiple linkage analyses would inflate the 
LOD scores (Clerget-Darpoux et a1. 1990; Weeks et a1. 
1990). Thompson (1984) derived the equivalence of mul
tiple analyses from the signifIcance level of the data with 
a single linkage test. In a report such as this one, we 
can consider that 20 to 50 independent markers would 
provide information in these two families. Assuming 
that these analyses are independent and that there is 
no disease locus linked to the tested markers for family 
1482, the probability of observing a LOD score greater 
than 2 varies from 13% to 30% (disease model 1) and 
from 8% to 18% (disease model 2). For family 1505, this 
probability varies from 7% to 16% (disease model 1) and 
from 8% to 18% (disease model 2). Thus, when no dis
ease locus exists, there is still a considerable probabil
ity of observing at least one LOD score greater than 2 
when this many independent analyses are performed. 

DISCUSSION 

The problems of detecting a single locus for suscepti
bility in the psychiatric disorders include conditions of 
complex inheritance, which may also be present in 
numerous inherited common diseases. These include 
variable penetrance (by which is meant that people may 
have the disease genetic vulnerability but not them
selves be ill), genetic linkage heterogeneity, oligogenic 
inheritance, and density and informativeness of the hu
man genetic map. Nonetheless, linkage may be detect
able under conditions of complex inheritance that are 
compatible with reasonable assumptions based on the 
observed familial recurrence risks in BP (Goldin et a1. 
1991). 

Polymorphism information content is de&ned as 
the probability that an offspring will be informative at 
a given marker locus. Polymorphism information con
tent values range from 0 (absence of heterozygosity) 
to 1 (informative in any given meiosis); one can think 
of a rough numerical equivalence of PIC and of aver
age heterozygosity. Most of the classic RFLP markers 
consist of biallelic systems that have low PIC values. 
Dinucleotide repeats generate allele systems formed by 
more than two alleles (systems of more than 10 alleles 
are not infrequent) and have high PIC values. Cur
rently, some micro satellite systems fIll gaps in the ex
isting genetic map, thus improving its informativeness 
and resolution (Decker et al. 1992; Dracopoli et al. 1991; 



38 P.V. Gejman et al. 

Hazan et a1. 1992; Kwiatkowski et a1. 1992; Lewis et a1. 
1990; Mills et a1. [in press]; Wang and Weber 1992; 
Wang et al. [unpublished data]; Wilkie et a1. 1992). 

In this paper, a "second pass" with microsatellites 
generated some isolated positive LOD scores in chro
mosome 1q. Although LOD scores obtained at locus 
D1S103 seemed encouraging at fIrst, they could have 
arisen by chance, given the number of linkage tests per
formed. Furthermore, in the previous published anal
ysis of this region in these pedigrees (Berrettini et al. 
1991b), the nearby markers did not suggest linkage. 
However, it is worth mentioning that positive LOD 
scores on chromosome 1q had been previously reported 
in the Old Order Amish pedigree 110 at loci in the same 
area (Pakstis et a1. 1991). 

Among the markers studied here, there are two 
possible candidate genes, Gs-alpha subunit-1 and 
gamma-aminobutyric acid-A (which is in a region pre
viously analyzed [Berrettini et al. 1990]). Our results 
do not support a causative relationship between these 
loci and BP. 

The availability of a large number of microsatellite 
systems evenly spanning the human genome, their in
formativeness, the rapid creation of genetic maps based 
on them, and the feasibility of multiplexing should 
make these systems the core of psychiatric genetic map
ping in the upcoming years. 
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