The deep human prehistory of global tropical forests and its relevance for modern conservation

Abstract

Significant human impacts on tropical forests have been considered the preserve of recent societies, linked to large-scale deforestation, extensive and intensive agriculture, resource mining, livestock grazing and urban settlement. Cumulative archaeological evidence now demonstrates, however, that Homo sapiens has actively manipulated tropical forest ecologies for at least 45,000 years. It is clear that these millennia of impacts need to be taken into account when studying and conserving tropical forest ecosystems today. Nevertheless, archaeology has so far provided only limited practical insight into contemporary human–tropical forest interactions. Here, we review significant archaeological evidence for the impacts of past hunter-gatherers, agriculturalists and urban settlements on global tropical forests. We compare the challenges faced, as well as the solutions adopted, by these groups with those confronting present-day societies, which also rely on tropical forests for a variety of ecosystem services. We emphasize archaeology's importance not only in promoting natural and cultural heritage in tropical forests, but also in taking an active role to inform modern conservation and policy-making.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Tropical Australasian Pleistocene and Holocene sites with evidence for human presence, forest disturbance and plant translocation.
Figure 2: A model of anthropic impact on tropical forest environments based on Amazonia.
Figure 3: Map of the temporal and geographical origins of selected domesticated plant and animal resources coming from tropical forest regions during the early (11,000–8,200 ka), middle (8,200–4,200 ka) and late Holocene (4,200 ka onwards).
Figure 4: LiDAR-derived bare earth model of urban and hydraulic infrastructure at a city on Phnom Kulen, 35 km north of Angkor Wat.

References

  1. 1

    The State of the Topics Project. State of the Tropics 2016 Report (James Cook Univ., 2016).

  2. 2

    Gardner, T. A. et al. Prospects for tropical forest biodiversity in a human-modified world. Ecol. Lett. 12, 561–582 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  3. 3

    Ghazoul, J. & Shiel, D. Tropical Rain Forest Ecology, Diversity, and Conservation (Oxford Univ. Press, 2010).

    Google Scholar 

  4. 4

    Measuring the Daily Destruction of the World's Rainforests (Scientific American, 2009); http://www.scientificamerican.com/article/earth-talks-daily-destruction

  5. 5

    Banda, K. et al. Plant diversity patterns in neotropical dry forests and their conservation implications. Science 353, 1383–1387 (2016).

    Article  CAS  Google Scholar 

  6. 6

    Martin, C. On the Edge: The State and Fate of the World's Tropical Rainforests (Report to the Club of Rome) (Greystone Books, 2015).

    Google Scholar 

  7. 7

    Evans, D. Airborne laser scanning as a method for exploring long-term socio-ecological dynamics in Cambodia. J. Archaeol. Sci. 74, 164–175 (2016).

    Article  Google Scholar 

  8. 8

    Denham, T. P. et al. Origins of agriculture at Kuk Swamp in the highlands of New Guinea. Science 301, 189–193 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9

    Barton, H. The case for rainforest foragers: the starch record at Niah Cave, Sarawak. Asian Perspect. 44, 56–72 (2005).

    Article  Google Scholar 

  10. 10

    Arroyo-Kalin, M. The Amazonian Formative: crop domestication and anthropogenic soils. Diversity 2, 473–504 (2010).

    Article  Google Scholar 

  11. 11

    Roberts, P. et al. Direct evidence for human reliance on rainforest resources in late Pleistocene Sri Lanka. Science 347, 1246–1249 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12

    Barker, G. et al. The ‘human revolution’ in lowland tropical Southeast Asia: the antiquity and behaviour of anatomically modern humans at Niah Cave (Sarawak, Borneo). J. Hum. Evol. 52, 243–261 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  13. 13

    Hunt, C. O., Gilbertson, D. D. & Rushworth, G. A 50,000-year record of late Pleistocene tropical vegetation and human impact in lowland Borneo. Quat. Sci. Rev. 37, 61–80 (2012).

    Article  Google Scholar 

  14. 14

    Barton, H., Denham, T., Neumann, K. & Arroyo-Kalin, M. Long-term perspectives on human occupation of tropical rainforests: an introductory overview. Quat. Int.http://dx.doi.org/10.1016/j.quaint.2011.07.044 (2012).

  15. 15

    McMichael, C. N. H., Matthews-Bird, F., Farfan-Rios, W. & Feeley, K. J. Ancient human disturbances may be skewing our understanding of Amazonian forests. Proc. Natl Acad. Sci. USA 114, 522–527 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16

    Piperno, D. R. & Pearsall, D. M. The Origins of Agriculture in the Lowland Neotropics (Smithsonian Acad. Press, 1998).

    Google Scholar 

  17. 17

    Arroyo-Kalin, M. Slash-burn-and-churn: landscape history and crop cultivation in pre-Columbian Amazonia. Quat. Int. 249, 4–18 (2012).

    Article  Google Scholar 

  18. 18

    Heckenberger, M. J. et al. Pre-Columbian urbanism, anthropogenic landscapes and the future of the Amazon. Science 321, 1214–1217 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19

    Sanz, N. Exploring Frameworks for Tropical Forest Conservation: Managing Production and Consumption for Sustainability (UNESCO, 2017).

    Google Scholar 

  20. 20

    Babin, D. Beyond Tropical Deforestation: From Tropical Deforestation to Forest Cover Dynamics and Forest Development (CIRAD/UNESCO, 2004).

    Google Scholar 

  21. 21

    De Dapper, M. Tropical Forests in a Changing Global Context (ARSOM, 2005).

    Google Scholar 

  22. 22

    Bailey, R. C. et al. Hunting and gathering in tropical rain forest; is it possible? Am. Anthropol. 91, 59–82 (1989).

    Article  Google Scholar 

  23. 23

    Gamble, C. Timewalkers: The Prehistory of Global Colonization (Stroud, Alan Sutton, 1993).

    Google Scholar 

  24. 24

    Grollemund, R. et al. Bantu expansion shows that habitat alters the route and pace of human dispersals. Proc. Natl Acad. Sci. USA 112, 13296–13301 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25

    Stahl, P. W. Archaeology in the lowland American tropics: current analytical methods and recent applications. (Cambridge Univ. Press, 1995).

    Google Scholar 

  26. 26

    Hemming, J. Tree of Rivers: The Story of the Amazon (Thames and Hudson, 2009).

    Google Scholar 

  27. 27

    Lewis, S. L. & Maslin, M. A. Defining the Anthropocene. Nature 519, 171–180 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28

    Steege, H. t. et al. Hyperdominance in the Amazonian tree flora. Science 342, 325 (2013).

    Google Scholar 

  29. 29

    McMichael, C. et al. Predicting pre-Columbian anthropogenic soils in Amazonia. Proc. R. Soc. Lond. B Biol. Sci. 281, 20132475 (2014).

    CAS  Article  Google Scholar 

  30. 30

    Bush, M. B. et al. Human disturbance amplifies Amazonian El Niño–Southern Oscillation signal. Glob. Change Biol. http://dx.doi.org/10.1111/gcb.13608 (2017).

  31. 31

    Levis, C. et al. Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science 355, 925–931 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32

    Smith, B. D. & Zeder, M. A. The onset of the Anthropocene. Anthropocene 4, 8–13 (2013).

    Article  Google Scholar 

  33. 33

    Roosevelt, A. C. The Amazon and the Anthropocene: 13,000 years of human influence in a tropical rainforest. Anthropocene 4, 69–87 (2013).

    Article  Google Scholar 

  34. 34

    Barker, G. Rainforest Foraging and Farming in Island Southeast Asia Vol. 1: The Archaeology of the Niah Caves, Sarawak (McDonald Institute, 2013).

    Google Scholar 

  35. 35

    Summerhayes, G. R. et al. Human adaptation and plant use in Highland New Guinea 49,000 to 44,000 years ago. Science 330, 78–81 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36

    Perera, N. et al. People of the ancient rainforest: late Pleistocene foragers at the Batadomba-lena rockshelter, Sri Lanka. J. Hum. Evol. 61, 254–269 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  37. 37

    Roosevelt, A. C., Douglas, J. & Brown, L. in The First Americans: The Pleistocene Colonization of the New World (ed. Jablonski, N. G. ) 159–223 (California Acad. Sci., 2002).

    Google Scholar 

  38. 38

    Storm, P. et al. Late Pleistocene Homo sapiens in a tropical rainforest fauna in East Java. J. Hum. Evol. 49, 536–545 (2005).

    PubMed  Article  Google Scholar 

  39. 39

    Westaway, K. E. et al. Age and biostratigraphic significance of the Punung rainforest fauna, East Java, Indonesia, and implications for Pongo and Homo. J. Hum. Evol. 53, 709–717 (2007).

    CAS  PubMed  Article  Google Scholar 

  40. 40

    Mijares, A. S. B. et al. New evidence for a 67,000-year-old human presence at Callao Cave, Luzon, Philippines. J. Hum. Evol. 59, 123–132 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  41. 41

    Liu, W. et al. The earliest unequivocally modern humans in southern China. Nature 526, 696–700 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42

    Mercader, J. Forest people: the role of African rainforests in human evolution and dispersal. Evol. Anthr. 11, 117–124 (2002).

    Article  Google Scholar 

  43. 43

    Roberts, P., Boivin, N., Lee-Thorp, J., Petraglia, M. & Stock, J. Tropical forests and the genus Homo. Evol. Anthr. 25, 306–317 (2016).

    Article  Google Scholar 

  44. 44

    Barker, G. & Farr, L. Archaeological Investigations in the Niah Caves, Sarawak Vol. 2. (McDonald Institute, 2016).

    Google Scholar 

  45. 45

    Gnecco, C. Against ecological reductionism: late Pleistocene hunter-gatherers in the tropical forests of northern South America. Quat. Int. 109–110, 13–21 (2003).

  46. 46

    Kershaw, A. P., Bretherton, S. C. & van der Kaars, S. A complete pollen record of the last 230 ka from Lynch's Crater, north-eastern Australia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 251, 23–45 (2007).

    Article  Google Scholar 

  47. 47

    Moss, P. T. & Kershaw, A. P. A late Quaternary marine palynological record (oxygen isotope stages 1 to 7) for the humid tropics of northeastern Australia based on ODP site 820. Palaeogeogr. Palaeoclimatol. Palaeoecol. 251, 4–22 (2007).

    Article  Google Scholar 

  48. 48

    Bird, M. I. et al. Humans, megafauna and environmental change in tropical Australia. J. Quat. Sci. 20, 493–452 (2013).

    Google Scholar 

  49. 49

    Fairbairn, A. S., Hope, G. S. & Summerhayes, G. R. Pleistocene occupation of New Guinea's highland and subalpine environments. World Archaeol. 38, 371–386 (2006).

    Article  Google Scholar 

  50. 50

    Siegel, P. E. et al. Paleoenvironmental evidence for first human colonization of the eastern Caribbean. Quat. Sci. Rev. 129, 275–295 (2015).

    Article  Google Scholar 

  51. 51

    Malhi, Y., Gardner, T. A., Goldsmith, G. R., Silman, M. R. & Zelazowski, P. Tropical forests in the Anthropocene. Annu. Rev. Environ. Resour. 39, 125–159 (2014).

    Article  Google Scholar 

  52. 52

    Hope, G. S., Flannery, T. F. & Boeardi, N. A preliminary report of changing Quaternary mammal faunas in subalpine New Guinea. Quat. Res. 40, 117–26 (1993).

    Article  Google Scholar 

  53. 53

    Doughty, C. E. et al. Megafauna extinction, tree species range reduction, and carbon storage in Amazonian forests. Ecography 39, 194–203 (2016).

    Article  Google Scholar 

  54. 54

    Rossetti, D. d. F., de Toledo, P. M., Moraes-Santos, H. M. & de Araújo Santos, A. E. Jr. Reconstructing habitats in central Amazonia using megafauna, sedimentology, radiocarbon, and isotope analyses. Quat. Res. 61, 289–300 (2004).

    Article  Google Scholar 

  55. 55

    Gosden, C. & Robertson, N. in Report of the Lapita Homeland Project (eds. Allen, J. & Gosden, C. ) 20–91 (Australian Natl Univ., 1991).

    Google Scholar 

  56. 56

    Paz, V. J. Rock shelters, caves, and archaeobotany in island Southeast Asia. Asian Perspectives 44, 107–118 (2005).

    Article  Google Scholar 

  57. 57

    Denham, T. P., Donohue, M. & Booth, S. Revisiting an old hypothesis: horticultural experimental in northern Australia. Antiquity 83, 634–648 (2009).

    Article  Google Scholar 

  58. 58

    Denham, T. P. Early agriculture and plant domestication in New Guinea and Island Southeast Asia. Curr. Anthropol. 52, S379–S395 (2011).

    Article  Google Scholar 

  59. 59

    Hunt, C. O. & Premathilake, R. Early Holocene vegetation, human activity and climate from Loagan Bunut, Sarawak, Malaysian Borneo. Quat. Int. 249, 105–119 (2012).

    Article  Google Scholar 

  60. 60

    Balée, W. Footprints of the forest: Ka’apar ethnobotany—the historical ecology of plant utilization by an Amazonian people. (Columbia Univ. Press, 1994).

    Google Scholar 

  61. 61

    Golson, J. in Foraging and Farming: The Evolution of Plant Exploitation (eds Harris, D. R. & Hillman, G. C. ) 109–136 (Unwin Hyman, 1989).

    Google Scholar 

  62. 62

    Gaffney, D., Ford, A. & Summerhayes, G. R. Crossing the Pleistocene–Holocene transition in the New Guinea Highlands: evidence from the lithic assemblage of Kiowa rockshelter. J. Anthropol. Archaeol. 39, 223–246 (2015).

    Article  Google Scholar 

  63. 63

    Roberts, P., Gaffney, D., Lee-Thorp, J. & Summerhayes, G. Persistent tropical foraging in the highlands of terminal Pleistocene/Holocene New Guinea. Nat. Ecol. Evol. 1, 0044 (2017).

    Article  Google Scholar 

  64. 64

    Iriarte, J., Denham, T. & Vrydaghs, L. Rethinking Agriculture: Archaeological and Ethnoarchaeological Perspectives (Left Coast Press, 2007).

    Google Scholar 

  65. 65

    Eriksson, J. et al. Identification of the yellow skin gene reveals a hybrid origin of the domestic chicken. PLoS Genet. 4, e1000010 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  66. 66

    Maxwell, J. J., Howarth, J. D., Vandergoes, M. J., Jacobsen, G. E. & Barber, I. G. The timing and importance of arboriculture and agroforestry in a temperate East Polynesia Society, the Moriori, Rekohu (Chatham Island). Quat. Sci. Rev. 149, 306–325 (2016).

    Article  Google Scholar 

  67. 67

    Shepard, G. H. & Ramirez, H. “Made in Brazil”: human dispersal of the Brazil nut (Bertholletia excelsa, Lecythidaceae) in ancient Amazonia. Econ. Bot. 65, 44–65 (2011).

    Article  Google Scholar 

  68. 68

    Lombardo, U. & Prümers, H. Pre-Columbian occupation patterns in the eastern plains of the Llanos de Moxos, Bolivian Amazonia. J. Archaeol. Sci. 37, 18750–1885 (2010).

    Article  Google Scholar 

  69. 69

    Rostain, S. Islands in the Rainforest: Landscape Management in Pre-Columbian Amazonia (Left Coast Press, 2013).

    Google Scholar 

  70. 70

    Bush, M. B., Piperno, D. R. & Colinvaux, P. A. A 6,000 year history of Amazonian maize cultivation. Nature 340, 303–305 (1989).

    Article  Google Scholar 

  71. 71

    Hermenegildo, T., O’Connell, T. C., Guapindaia, V. L. C. & Neves, E. G. New evidence for subsistence strategies of late pre-colonial societies of the mouth of the Amazon based on carbon and nitrogen isotopic data. Quat. Int. http://dx.doi.org/10.1016/j.quaint.2017.03.003 (2017).

  72. 72

    Bayon, G., Dennielou, B., Etoubleau, J., Ponzevera, E. & Toucanne, S. Intensifying weathering and land use in Iron Age Central Africa. Science 335, 1219–1222 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  73. 73

    Bellwood, P. Cultural and biological differentiation in Peninsular Malaysia: the last 10,000 years. Asian Perspec. 32, 37–60 (1993).

    Google Scholar 

  74. 74

    Krigbaum, J. Neolithic subsistence patterns in northern Borneo reconstructed with stable carbon isotopes of enamel. J. Anthropol. Archaeol. 22, 292–304 (2003).

    Article  Google Scholar 

  75. 75

    Fitzpatrick, S. M. & Keegan, W. F. Human impacts and adaptations in the Caribbean islands: a historical ecology approach. Earth Env. Sci. T. R. So. 98, 29–45 (2007).

    Google Scholar 

  76. 76

    Prebble, M. & Dowe, J. L. The late Quaternary decline and extinction of palms on oceanic Pacific islands. Quat. Sci. Rev. 27, 2546–2567 (2008).

    Article  Google Scholar 

  77. 77

    Prebble, M. & Wilmshurst, J. M. Detecting the initial impact of humans and introduced species on island environments in Remote Oceania using palaeoecology. Biol. Invasions 11, 1529–1556 (2009).

    Article  Google Scholar 

  78. 78

    Fall, P. L. in Altered Ecologies: Fire, Climate and Human Influence on Terrestrial Landscapes (eds Haberle, S. G., Stevenson, J. & Prebble, M. ) 253–271 (Australian Natl Univ., 2010).

    Google Scholar 

  79. 79

    Steadman, D. W. Extinction and Biogeography of Tropical Pacific Birds (Univ. Chicago Press, 2006).

    Google Scholar 

  80. 80

    Sheil, D. et al. The Impacts and Opportunities of Oil Palm in Southeast Asia: What Do We Know and What Do We Need To Know? Occasional Paper no. 51 (CIFOR, 2009).

    Google Scholar 

  81. 81

    Fearnside, P. M., Leafl, N. Jr. & Fernandes, F. M. Rainforest burning and the global carbon budgest: biomass, combustion efficiency and charcoal formation in the Brazilian Amazon. J. Geophys. Res. Atmos. 98, 16733–16743 (1993).

    Article  Google Scholar 

  82. 82

    Iriarte, J. et al. Fire-free land use in pre-1492 Amazonian savannas. Proc. Natl Acad. Sci. USA 109, 6473–6478 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  83. 83

    Preston, D. Exclusive: lost city discovered in the Honduran rain forest. National Geographic (2 March 2015); http://news.nationalgeographic.com/2015/03/150302-honduras-lost-city-monkey-god-maya-ancient-archaeology/

  84. 84

    Edwards, P. Cambodge: The Cultivation of a Nation, 1860–1945 (Univ. Hawaii Press, 2007).

    Google Scholar 

  85. 85

    Meggers, B. J. Environmental limitation on the development of culture. Am. Anthropol. 56, 801–824 (1954).

    Article  Google Scholar 

  86. 86

    Fisher, C. T. et al. Identifying ancient settlement patterns through LiDAR in the Mosquaitia region of Honduras. PLoS ONE 11 e0159890 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  87. 87

    Webster, D. The Fall of the Ancient Maya: Solving the Mystery of the Maya Collapse (Thames and Hudson, 2002).

    Google Scholar 

  88. 88

    Larsen, M. C. Contemporary human uses of tropical forested watersheds and riparian corridors: ecosystem services and hazard mitigation, with examples from Panama, Puerto Rico, and Venezuela. Quat. Int.http://dx.doi.org/10.1016/j.quaint.2016.03.016 (2016).

  89. 89

    Davis-Salazar, K. L. Late Classic Maya drainage and flood control at Copan, Honduras. Anc. Mesoam. 17, 125–138 (2006).

    Article  Google Scholar 

  90. 90

    McAnany, P. A. & Gallareta Negrón, T. in Questioning Collapse: Human Resilience, Ecological Vulnerability, and the Aftermath of Empire (eds McAnany, P. A. & Yoffee, N. ) 142–175 (Cambridge Univ. Press, 2010).

    Google Scholar 

  91. 91

    Beach, T., Dunning, N., Luzzadder-Beach, S., Cook, D. E. & Lohse, J. Impacts of the ancient Maya on soils and soil erosion in the central Maya Lowlands. Catena 65, 166–178 (2006).

    Article  Google Scholar 

  92. 92

    Labrière, N., Locatelli, B., Laumonier, Y., Freycon, V. & Bernoux, M. Soil erosion in the humid tropics: a systematic quantitative review. Agric. Ecosyst. Environ. 203, 127–139 (2015).

    Article  Google Scholar 

  93. 93

    Ford, A. & Nigh, R. The Maya Forest Garden: Eight Millennia of Sustainable Cultivation of the Tropical Woodlands (Routledge, 2015).

    Google Scholar 

  94. 94

    McNeil, C. L. Deforestation, agroforestry, and sustainable land management practices among the Classic period Maya. Quat. Int. 249, 19–30 (2012).

    Article  Google Scholar 

  95. 95

    Neves, E. G. in Handbook of South American Archaeology (eds Silverman, H. & Isbell, W. ) 359–379 (Springer, 2008).

    Google Scholar 

  96. 96

    Fletcher, R. Low-density, agrarian-based urbanism: a comparative view. Insights 2, 2–19 (2009).

    Google Scholar 

  97. 97

    Simon, D. & Adam-Bradford, A. Archaeology and contemporary dynamics for more sustainable, resilient cities in the peri-urban interface. Wat. Sci. Technol. Lib. 72, 57–83 (2016).

    Article  Google Scholar 

  98. 98

    Buckley, B. M. et al. Climate as a contributing factor in the demise of Angkor, Cambodia. Proc. Natl Acad. Sci. USA 107, 6748–6752 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  99. 99

    Lucero, L. J., Fletcher, R. & Coningham, R. From ‘collapse’ to urban diaspora: the transformation of low-density, dispersed agrarian urbanism. Antiquity 89, 1139–1154 (2015).

    Article  Google Scholar 

  100. 100

    Barthel S. & Isendahl C. Urban gardens, agricultures and water management: sources of resilience for long-term food security in cities. Ecol. Econ. 86, 224–234 (2012).

    Article  Google Scholar 

  101. 101

    Isendahl, C. & Smith, M. E. Sustainable agrarian urbanism: the low-density cities of the Mayas and Aztecs. Cities 31, 132–143 (2013).

    Article  Google Scholar 

  102. 102

    Bush, M. B. & Silman, M. R. Amazonian exploitation revisited: ecological asymmetry and the policy pendulum. Front. Ecol. Evol. 5, 457–465 (2007).

    Article  Google Scholar 

  103. 103

    Roberts, P. in Exploring Frameworks for Tropical Forest Conservation: Managing Production and Consumption for Sustainability (ed. Sanz, N. ) 28–44 (UNESCO, 2017).

    Google Scholar 

  104. 104

    Rostain, S. in Exploring Frameworks for Tropical Forest Conservation: Managing Production and Consumption for Sustainability (ed. Sanz, N. ) 44–65 (UNESCO, 2017).

    Google Scholar 

  105. 105

    Sustainable Development Goals (United Nations); http://www.un.org/sustainabledevelopment/sustainable-development-goals/

  106. 106

    Burney, D. A. & Burney, L. P. Paleoecology and “inter-situ” restoration on Kaua’i, Hawai’i. Front. Ecol. Environ. 5, 483–490 (2007).

    Article  Google Scholar 

  107. 107

    Fraser J. A., Frausin, V. & Jarvis, A. An intergenerational transmission of sustainability? Ancestral habitus and food production in a traditional agro-ecosystem of the Upper Guinea Forest, West Africa. Glob. Environ. Change 31, 226–238 (2015).

    Article  Google Scholar 

  108. 108

    Sheil, D. et al. Do anthropogenic dark earths occur in the interior of Borneo? Some initial observations from East Kalimantan. Forests 3, 207–229 (2012).

    Article  Google Scholar 

  109. 109

    Glaser, B. & Birk, J. J. State of the scientific knowledge on properties and genesis of anthropogenic dark earths in Central Amazonia (terra preta de Índio). Geochim. Cosmochim. Acta 82, 39–51 (2011).

    Article  CAS  Google Scholar 

  110. 110

    Barume, A. Heading Towards Extinction? Indigenous Rights in Africa: the Case of the Twa of the Kahuzi-Biega National Park, Democratic Republic of Congo (IWGIA, 2000).

    Google Scholar 

  111. 111

    Ocheje, P. D. “In the public interest”: forced evictions, land rights and human development in Africa. J. Afr. Law 51, 173–214 (2007).

    Article  Google Scholar 

  112. 112

    Ricardo, B. Deforestation in Amazonia (1970–2013) (Instituto Socioambiental, 2012).

    Google Scholar 

  113. 113

    Rocha, B. C., Jácome, C., Stuchi, F. F., Mongeló, G. Z. & Valle, R. Arqueologia pelas gentes: um manifesto. Constatações e posicionamentos críticos sobre a arqueologia brasileira em tempos de PAC. Revista de Arqueologia 26, 130–140 (2013).

    Article  Google Scholar 

  114. 114

    Clement, C. R. et al. The domestication of Amazonia before European conquest. Proc. R. Soc. Lond. B Bio. Sci. 282, 20150813 (2015).

    Article  Google Scholar 

  115. 115

    Hobbs, R. J., Higgs, E. & Harris, J. A. Novel ecosystems: implications for conservation and restoration. Trends Ecol. Evol. 24, 599–605 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  116. 116

    Bonell, M. & Bruijnzeel, L. A. Forests, Water and People in the Humid Tropics: Past, Present and Future Hydrological Research for Integrated Land and Water Management (Cambridge Univ. Press/UNESCO, 2005).

    Google Scholar 

  117. 117

    World Heritage Forests. World Heritage Vol. 61, UNESCO (October 2011); http://unesdoc.unesco.org/images/0021/002139/213912e.pdf

  118. 118

    Barker, G. et al. in Why cultivate? Anthropological and Archaeological Approaches to Foraging-Farming Transitions in Southeast Asia (eds Barker, G. & Janowski, M. ) 59–72 (McDonald Institute, 2011).

    Google Scholar 

  119. 119

    Hunt, C. O. & Rabett, R. J. Holocene landscape intervention and plant food production strategies in island and mainland southeast Asia. J. Archaeol. Sci. 51, 22–33 (2014).

    Article  Google Scholar 

  120. 120

    Marwick, B. et al. Early modern human lithic technology from Jerimalai, East Timor. J. Hum. Evol. 101, 45–64 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  121. 121

    Kershaw, A. P., van der Kaars, S. & Moss, P. T. Late Quaternary Milankovitch-scale climatic change and variability and its impact on monsoonal Australasia. Marine Geol. 201, 81–95 (2003).

    CAS  Article  Google Scholar 

  122. 122

    van der Kaars, S., Wang, X., Kershaw, P., Guichard, F. & Arifin Setiabudi, D. A late Quaternary palaeoecological record from the Banda Sea, Indonesia: patterns of vegetation, climate and biomass burning in Indonesia and northern Australia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 155, 135–153 (2000).

    Article  Google Scholar 

  123. 123

    Walker, M. J. C. et al. Formal subdivision of the Holocene series/epoch: a discussion paper by a Working Group of INTIMATE (integration of ice-core, marine and terrestrial records) and the subcommission on Quaternary stratigraphy (International Commission on Stratigraphy). J. Quat. Sci. 27, 649–659 (2012).

    Article  Google Scholar 

  124. 124

    Pearsall, D. in Encyclopedia of Archaeology (ed. Pearsall, D ) 1822–1842 (Academic Press, 2008).

    Google Scholar 

  125. 125

    Clement, C. R., De Cristo-Araúgo, M., D’Eeckenbrugge, G. C., Pereira, A. A. & Picanço-Rodrigues, D. Origin and domestication of native Amazonian crops. Diversity 2, 72–106 (2010).

    Article  Google Scholar 

  126. 126

    Piperno, D. R. The origins of plant cultivation and domestication in the New World trophics: patterns, process, and new developments. Curr. Anthropol. 52, S453–S470 (2011).

    Article  Google Scholar 

  127. 127

    Kingwell-Banham, E. & Fuller, D. Q. Shifting cultivators in South Asia: expansion, marginalization and specialization over the long term. Quat. Int. 249, 84–95 (2012).

    Article  Google Scholar 

  128. 128

    Storey, A. A. et al. Investigating the global dispersal of chickens in prehistory using ancient mitochondrial DNA signatures. PLoS ONE 7, e39171.

  129. 129

    Fuller, D. Q. & Hildebrand, E. in The Oxford Handbook of African Archaeology (eds Mitchell, P. & Lane, P. J. ) 507–526 (Oxford Univ. Press, 2013).

    Google Scholar 

  130. 130

    Nagarajan, M., Nimisha, K. & Kumar, S. Mitochondrial DNA variability of domestic river buffalo (Bubalus bubalis) populations: genetic evidence for domestication of river buffalo in Indian subcontinent. Genome. Biol. Evol. 7 1252–1259 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  131. 131

    Penny, D., Chevance, J.-B., Tang, D. & De Greef, S. The environmental impact of Cambodia's ancient city of Mahendraparvata (Phnom Kulen). PLoS ONE 9, e84252 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the participants of the Pantropica 2016 workshop, funded and hosted by the Department of Archaeology at the Max Planck Institute for the Science of Human History, Jena, for taking part in an international meeting devoted to the global archaeology of rainforest environments. We would also like to thank N. Sanz, and the UNESCO office in Mexico, for invitations to tropical forest conservation workshops in Xalapa (2015) and Mexico City (2017). The discussions that took place during these three workshops informed and shaped the early stages of this manuscript. We would also like to extend our thanks to N. Hofer for her help with Fig. 1, Fig. 2 and Fig. 3. D.E.'s contribution, and N. Hofer's contribution to the illustrations, were funded by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 639828) in partnership with the APSARA National Authority and the Ministry of Culture and Fine Arts, Cambodia. We also thank the Max Planck Institute for the Science of Human History, Jena for the ongoing funding of P.R. and N.B.

Author information

Affiliations

Authors

Contributions

P.R. conceived of the manuscript, wrote the manuscript and conceived of and produced Fig. 2 and Fig. 3. C.H. wrote the manuscript and conceived of and produced Fig. 1. M.A.-K. wrote the manuscript and conceived of and produced Fig. 2 and Fig. 3. D.E. wrote the manuscript and conceived of and produced Fig. 3 and Fig. 4. N.B. conceived of the manuscript, wrote the manuscript and conceived of Fig. 2 and Fig. 3.

Corresponding author

Correspondence to Patrick Roberts.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roberts, P., Hunt, C., Arroyo-Kalin, M. et al. The deep human prehistory of global tropical forests and its relevance for modern conservation. Nature Plants 3, 17093 (2017). https://doi.org/10.1038/nplants.2017.93

Download citation

Further reading