Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The evening complex coordinates environmental and endogenous signals in Arabidopsis

Abstract

Plants maximize their fitness by adjusting their growth and development in response to signals such as light and temperature. The circadian clock provides a mechanism for plants to anticipate events such as sunrise and adjust their transcriptional programmes. However, the underlying mechanisms by which plants coordinate environmental signals with endogenous pathways are not fully understood. Using RNA-sequencing and chromatin immunoprecipitation sequencing experiments, we show that the evening complex (EC) of the circadian clock plays a major role in directly coordinating the expression of hundreds of key regulators of photosynthesis, the circadian clock, phytohormone signalling, growth and response to the environment. We find that the ability of the EC to bind targets genome-wide depends on temperature. In addition, co-occurrence of phytochrome B (phyB) at multiple sites where the EC is bound provides a mechanism for integrating environmental information. Hence, our results show that the EC plays a central role in coordinating endogenous and environmental signals in Arabidopsis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: There is a high degree of overlap of binding sites for ELF3, ELF4 and LUX genome-wide.
Figure 2: The EC regulates a wide set of target genes controlling major biological processes in the plant, particularly the circadian clock, photosynthesis, temperature signalling, growth and phytohormone signalling.
Figure 3: The EC directly regulates many genes that are rhythmically expressed.
Figure 4: The EC affects temperature response genome-wide.
Figure 5: EC target genes are temperature responsive.
Figure 6: The EC and phytochrome temperature response is additive in seedlings.

Similar content being viewed by others

References

  1. Willis, C. G., Ruhfel, B., Primack, R. B., Miller-Rushing, A. J. & Davis, C. C. Phylogenetic patterns of species loss in Thoreau's woods are driven by climate change. Proc. Natl Acad. Sci. USA 105, 17029–17033 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fitter, A. H. & Fitter, R. S. Rapid changes in flowering time in British plants. Science 296, 1689–1691 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Dodd, A. N. et al. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309, 630–633 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Harmer, S. L. et al. Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290, 2110–2113 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Huang, H. & Nusinow, D. A. Into the evening: complex interactions in the Arabidopsis circadian clock. Trends Genet. https://dx.doi.org/10.1016/j.tig.2016.08.002 (2016).

  6. Greenham, K. & McClung, C. R. Integrating circadian dynamics with physiological processes in plants. Nat. Rev. Genet. 16, 598–610 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Nusinow, D. A. et al. The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature 475, 398–402 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Thines, B. & Harmon, F. G. Ambient temperature response establishes ELF3 as a required component of the core Arabidopsis circadian clock. Proc. Natl Acad. Sci. USA 107, 3257–3262 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Filo, J. et al. Gibberellin driven growth in elf3 mutants requires PIF4 and PIF5. Plant Signal. Behav. 10, e992707 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Koini, M. A. et al. High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Curr. Biol. 19, 408–413 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Kumar, S. V. et al. Transcription factor PIF4 controls the thermosensory activation of flowering. Nature 484, 242–245 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Thines, B. C., Youn, Y., Duarte, M. I. & Harmon, F. G. The time of day effects of warm temperature on flowering time involve PIF4 and PIF5. J. Exp. Bot. 65, 1141–1151 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fernández, V., Takahashi, Y., Le Gourrierec, J. & Coupland, G. Photoperiodic and thermosensory pathways interact through CONSTANS to promote flowering at high temperature under short days. Plant J. 86, 426–440 (2016).

    Article  PubMed  Google Scholar 

  14. Sureshkumar, S., Dent, C., Seleznev, A., Tasset, C. & Balasubramanian, S. Nonsense-mediated mRNA decay modulates FLM-dependent thermosensory flowering response in Arabidopsis. Nat. Plants 2, 16055 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Box, M. S. et al. ELF3 controls thermoresponsive growth in Arabidopsis. Curr. Biol. 25, 194–199 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Raschke, A. et al. Natural variants of ELF3 affect thermomorphogenesis by transcriptionally modulating PIF4-dependent auxin response genes. BMC Plant Biol. 15, 197 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Helfer, A. et al. LUX ARRHYTHMO encodes a nighttime repressor of circadian gene expression in the Arabidopsis core clock. Curr. Biol. 21, 126–133 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chow, B. Y., Helfer, A., Nusinow, D. A. & Kay, S. A. ELF3 recruitment to the PRR9 promoter requires other evening complex members in the Arabidopsis circadian clock. Plant Signal. Behav. 7, 170–173 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yu, C.-P., Lin, J.-J. & Li, W.-H. Positional distribution of transcription factor binding sites in Arabidopsis thaliana. Sci. Rep. 6, 25164 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. O'Malley, R. C. et al. Cistrome and epicistrome features shape the regulatory DNA landscape. Cell 165, 1280–1292 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mizuno, T. et al. Ambient temperature signal feeds into the circadian clock transcriptional circuitry through the EC night-Time repressor in Arabidopsis thaliana. Plant Cell Physiol. 55, 958–976 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Hsu, P. Y. & Harmer, S. L. Wheels within wheels: the plant circadian system. Trends Plant Sci. 19, 240–249 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Mochizuki, N., Brusslan, J. A., Larkin, R., Nagatani, A. & Chory, J. Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proc. Natl Acad. Sci. USA 98, 2053–2058 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cheng, N.-H., Liu, J.-Z., Brock, A., Nelson, R. S. & Hirschi, K. D. AtGRXcp, an Arabidopsis chloroplastic glutaredoxin, is critical for protection against protein oxidative damage. J. Biol. Chem. 281, 26280–8 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Chow, B. Y. et al. Transcriptional regulation of LUX by CBF1 mediates cold input to the circadian clock in Arabidopsis. Curr. Biol. 24,, (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Bai, M.-Y., Fan, M., Oh, E. & Wang, Z.-Y. A triple helix-loop-helix/basic helix-loop-helix cascade controls cell elongation downstream of multiple hormonal and environmental signaling pathways in Arabidopsis. Plant Cell 24, 4917–4929 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ikeda, M., Fujiwara, S., Mitsuda, N. & Ohme-Takagi, M. A triantagonistic basic helix-loop-helix system regulates cell elongation in Arabidopsis. Plant Cell 24, 4483–4497 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rawat, R. et al. REVEILLE1, a Myb-like transcription factor, integrates the circadian clock and auxin pathways. Proc. Natl Acad. Sci. USA 106, 16883–8 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nitschke, S. et al. Circadian stress regimes affect the circadian clock and cause jasmonic acid-dependent cell death in cytokinin-deficient Arabidopsis plants. Plant Cell 28, 1616–1639 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang, H. et al. Identification of evening complex associated proteins in Arabidopsis by affinity purification and mass spectrometry. Mol. Cell. Proteomics 15, 201–217 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Jung, J.-H. et al. Phytochromes function as thermosensors in Arabidopsis. Science 354, 886–889 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Legris, M. et al. Phytochrome B integrates light and temperature signals in Arabidopsis. Science 354 897–900 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Reed, J. W. et al. Independent action of ELF3 and phyB to control hypocotyl elongation and flowering time. Plant Physiol. 122, 1149–1160 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dai, S. et al. BROTHER OF LUX ARRHYTHMO is a component of the Arabidopsis circadian clock. Plant Cell 23, 961–972 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kaiserli, E. et al. Integration of light and photoperiodic signaling in transcriptional nuclear foci. Dev. Cell 35, 311–321 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bendix, C., Marshall, C. M. & Harmon, F. G. Circadian clock genes universally control key agricultural traits. Mol. Plant 8, 1135–1152 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Battisti, D. S. & Naylor, R. L. Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323, 240–244 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Strasser, B., Sanchez-Lamas, M., Yanovsky, M. J., Casal, J. J. & Cerdan, P. D. Arabidopsis thaliana life without phytochromes. Proc. Natl Acad. Sci. USA 107, 4776–4781 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Medzihradszky, M. et al. Phosphorylation of phytochrome B inhibits light-induced signaling via accelerated dark reversion in Arabidopsis. Plant Cell 25, 535–544 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jaeger, K. E., Pullen, N., Lamzin, S., Morris, R. J. & Wigge, P. A. Interlocking feedback loops govern the dynamic behavior of the floral transition in Arabidopsis. Plant Cell 25, 820–833 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li, H. et al. The sequence alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Trapnell, C., Pachter, L. & Salzberg, S. L. Tophat: discovering splice junctions with RNA-seq. Bioinformatics 25, 1105–1111 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Anders, S., Pyl, P. T. & Huber, W. HTSeq--a python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. Edger: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Mi, H., Muruganujan, A., Casagrande, J. T. & Thomas, P. D. Large-scale gene function analysis with the PANTHER classification system. Nat. Protoc. 8, 1551–1566 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Tang, H. et al. GAOTOOLS: Tools for Gene Ontology. Zenodo. http://dx.doi.org/10.5281/zenodo.31628 (2015).

  52. Jansson . A guide to the Lhc genes and their relatives in Arabidopsis. Trends Plant Sci. 4, 236–240 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Hornitschek, P. et al. Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling. Plant J. 71, 699–711 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Mitra, A., Choi, H. K. & An, G. Structural and functional analyses of Arabidopsis thaliana chlorophyll a/b-binding protein (cab) promoters. Plant Mol. Biol. 12, 169–179 (1989).

    Article  CAS  PubMed  Google Scholar 

  55. Beligni, M. V. & Mayfield, S. P. Arabidopsis thaliana mutants reveal a role for CSP41a and CSP41b, two ribosome-associated endonucleases, in chloroplast ribosomal RNA metabolism. Plant Mol. Biol. 67, 389–401 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Park, D. H. et al. Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science 285, 1579–82 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Salome, P. A. & McClung, C. R. PSEUDO-RESPONSE REGULATOR 7 and 9 are partially redundant genes essential for the temperature responsiveness of the Arabidopsis circadian clock. Plant Cell 17, 791–803 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Salome, P. A., Weigel, D. & McClung, C. R. The role of the Arabidopsis morning loop components CCA1, LHY, PRR7, and PRR9 in temperature compensation. PLANT CELL ONLINE 22, 3650–3661 (2010).

    Article  CAS  Google Scholar 

  59. Seung, D. et al. Arabidopsis thaliana AMY3 is a unique redox-regulated chloroplastic α-amylase. J. Biol. Chem. 288, 33620–33 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Seaton, D. D. et al. Linked circadian outputs control elongation growth and flowering in response to photoperiod and temperature. Mol. Syst. Biol. 11, 776 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Jaglo-Ottosen, K. R., Gilmour, S. J., Zarka, D. G., Schabenberger, O. & Thomashow, M. F. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280, 104–106 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Riechmann, J. L. et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290, 2105–2110 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Chen, K.-M. et al. Small chloroplast-targeted DnaJ proteins are involved in optimization of photosynthetic reactions in Arabidopsis thaliana. BMC Plant Biol. 10, 43 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kendall, S. L. et al. Induction of dormancy in Arabidopsis summer annuals requires parallel regulation of DOG1 and hormone metabolism by low temperature and CBF transcription factors. Plant Cell 23, 2568–80 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang, H. et al. Regulation of Arabidopsis brassinosteroid signaling by atypical basic helix-loop-helix proteins. Plant Cell 21, 3781–3791 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Crocco, C. D. et al. The transcriptional regulator BBX24 impairs DELLA activity to promote shade avoidance in Arabidopsis thaliana. Nat. Commun. 6, 6202 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Gangappa, S. N. et al. The Arabidopsis B-BOX protein BBX25 interacts with HY5, negatively Regulating BBX22 expression to suppress seedling photomorphogenesis. Plant Cell 25, 1243–1257 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bartrina, I., Otto, E., Strnad, M., Werner, T. & Schmülling, T. Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. Plant Cell 23, 69–80 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zwack, P. J. & Rashotte, A. M. Interactions between cytokinin signalling and abiotic stress responses. J. Exp. Bot. 66, 4863–4871 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Cutcliffe, J. W., Hellmann, E., Heyl, A. & Rashotte, A. M. CRFs form protein–protein interactions with each other and with members of the cytokinin signalling pathway in Arabidopsis via the CRF domain. J. Exp. Bot. 62, 4995–5002 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zwack, P. J. et al. Cytokinin response factor 6 represses cytokinin-associated genes during oxidative stress. Plant Physiol. 172, pp. 00415.2016 (2016).

    Google Scholar 

  72. Wilson, M. E., Mixdorf, M., Berg, R. H. & Haswell, E. S. Plastid osmotic stress influences cell differentiation at the plant shoot apex. Development 143, 3382–93 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rawat, R. et al. REVEILLE1, a Myb-like transcription factor, integrates the circadian clock and auxin pathways. Proc. Natl Acad. Sci. USA 106, 16883–8 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dong, T. et al. Abscisic Acid uridine diphosphate glucosyltransferases play a crucial role in abscisic acid homeostasis in Arabidopsis. Plant Physiol. 165, 277–289 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rizza, A., Boccaccini, A., Lopez-Vidriero, I., Costantino, P. & Vittorioso, P. Inactivation of the ELIP1 and ELIP2 genes affects Arabidopsis seed germination. New Phytol. 190, 896–905 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Li, G. et al. Coordinated transcriptional regulation underlying the circadian clock in Arabidopsis. Nat. Cell Biol. 13, 616–622 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Wigge laboratory for feedback and discussions. This work was supported by the Biotechnology and Biology Research Council (RG80054 to P.A.W.); P.A.W.'s laboratory is supported by a Fellowship from the Gatsby Foundation (GAT3273/GLB). Funding for open access charge: (Gatsby Foundation/GAT3273/GLB). We thank S. Kay for providing us with the gLUX-GFP lux-4 and gELF4-HA elf4-2 transgenic plants.

Author information

Authors and Affiliations

Authors

Contributions

D.E.: wrote a large proportion of the manuscript, lead researcher on all analysis. Involved in experimental design, prepared Figs 14. J.-H.J.: experimental design, generated Fig. 5, created lines used in the study. H.L.: extensive bioinformatics analysis. Mapped and analysed most of the datasets for the ChIP experiments. Performed motif searching and so on. S.B.: performed the initial mapping of the first ELF3 ChIP and made insights into rhythmical gene expression using clustering that were instrumental in the development of the project. L.G.: collaborating group. Performed the first analysis of EC binding and motif analysis. M.S.B.: generated the RNA-seq time course datasets. V.C.: generated the RNA-seq time course datasets. S.C.: generated the RNA-seq time course datasets. D.S.: helped perform ChIP-seq experiments. C.Z.: PI. Collaborator, supervisor of L.G., made key structural biology and experimental design contributions. Helped write the paper. K.E.J.: PI. Performed all the ChIP-seq experiments the paper is based on. Writing the paper and experimental design. P.A.W.: PI. Experimental design and discussions, helped write the paper.

Corresponding author

Correspondence to Philip A. Wigge.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–7. (PDF 43186 kb)

Supplementary Table 1

A table containing information about the sequencing quality, such as the number of reads and the number of mapped reads, for each ChIP-seq experiment. (XLSX 38 kb)

Supplementary Table 2

A table containing ChIP-seq peaks predicted by MACS2 for ELF3, ELF4, and LUX at 22 °C and LUX at 17 °C. (XLSX 180 kb)

Supplementary Table 3

A table containing the details of all the statistical analysis (that is, the contingency tables used in the Fisher exact tests). (XLSX 22 kb)

Supplementary Table 4

A table containing information about both the de novo predicted motifs from HOMER2 and the occurrence of the G-box, LBS, and 'motif 2' motifs in the peaks that are within 3000 bp of differentially expressed genes. (XLSX 197 kb)

Supplementary Table 5

A table containing TPM values for the Col-0, elf3-1 and lux-4 time courses at 22 °C and 27 °C. (XLSX 33808 kb)

Supplementary Table 6

A table containing the list of genes that are within the top 5% most differentially expressed in elf3-1 versus Col-0 or lux-4 versus Col-0 in at least one time point. (XLSX 178 kb)

Supplementary Table 7

A table containing lists the GO annotations of each of the predicted target genes from Supplementary Table 4. (XLSX 84 kb)

Supplementary Table 8

A table containing the raw data used in the production of Fig. 5a. (XLSX 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezer, D., Jung, JH., Lan, H. et al. The evening complex coordinates environmental and endogenous signals in Arabidopsis. Nature Plants 3, 17087 (2017). https://doi.org/10.1038/nplants.2017.87

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2017.87

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing