Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Architecture and permeability of post-cytokinesis plasmodesmata lacking cytoplasmic sleeves

Abstract

Plasmodesmata are remarkable cellular machines responsible for the controlled exchange of proteins, small RNAs and signalling molecules between cells. They are lined by the plasma membrane (PM), contain a strand of tubular endoplasmic reticulum (ER), and the space between these two membranes is thought to control plasmodesmata permeability. Here, we have reconstructed plasmodesmata three-dimensional (3D) ultrastructure with an unprecedented level of 3D information using electron tomography. We show that within plasmodesmata, ER–PM contact sites undergo substantial remodelling events during cell differentiation. Instead of being open pores, post-cytokinesis plasmodesmata present such intimate ER–PM contact along the entire length of the pores that no intermembrane gap is visible. Later on, during cell expansion, the plasmodesmata pore widens and the two membranes separate, leaving a cytosolic sleeve spanned by tethers whose presence correlates with the appearance of the intermembrane gap. Surprisingly, the post-cytokinesis plasmodesmata allow diffusion of macromolecules despite the apparent lack of an open cytoplasmic sleeve, forcing the reassessment of the mechanisms that control plant cell–cell communication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Plasmodesmata ER–PM contact site morphology evolves during tissue development in root tips.
Figure 2: The spoke-like tethering elements of type II plasmodesmata correlate with ER–PM spacing and are not sensitive to F-actin polymerization inhibitor drugs.
Figure 3: Very tight ER–PM contact in post-cytokinesis plasmodesmata.
Figure 4: Very tight ER–PM contacts are established during cell plate formation.
Figure 5: Molecular trafficking through type I plasmodesmata.

Similar content being viewed by others

References

  1. Stahl, Y. & Faulkner, C. Receptor complex mediated regulation of symplastic traffic. Trends Plant Sci. 21, 450–459 (2016).

    CAS  PubMed  Google Scholar 

  2. Otero, S., Helariutta, Y. & Benitez-alfonso, Y. Symplastic communication in organ formation and tissue patterning. Curr. Opin. Plant Biol. 29, 21–28 (2016).

    PubMed  Google Scholar 

  3. Benkovics, A. H. & Timmermans, M. C. P. Developmental patterning by gradients of mobile small RNAs. Curr. Opin. Genet. Dev. 27, 83–91 (2014).

    CAS  PubMed  Google Scholar 

  4. Vaddepalli, P. et al. The C2-domain protein QUIRKY and the receptor-like kinase STRUBBELIG localize to plasmodesmata and mediate tissue morphogenesis in Arabidopsis thaliana. Development 141, 4139–4148 (2014).

    CAS  PubMed  Google Scholar 

  5. Daum, G., Medzihradszky, A., Suzaki, T. & Lohmann, J. U. A mechanistic framework for noncell autonomous stem cell induction in Arabidopsis. Proc. Natl Acad. Sci. USA 111, 14619–14624 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Stahl, Y. et al. Moderation of Arabidopsis root stemness by CLAVATA1 and ARABIDOPSIS CRINKLY4 receptor kinase complexes. Curr. Biol. 23, 362–371 (2013).

    CAS  PubMed  Google Scholar 

  7. Benitez-alfonso, Y. et al. Symplastic intercellular connectivity regulates lateral root patterning. Dev. Cell 26, 136–147 (2013).

    CAS  PubMed  Google Scholar 

  8. Faulkner, C. et al. LYM2-dependent chitin perception limits molecular flux via plasmodesmata. Proc. Natl Acad. Sci. USA 110, 9166–9170 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wu, S. et al. Symplastic signaling instructs cell division, cell expansion, and cell polarity in the ground tissue of Arabidopsis thaliana roots. Proc. Natl Acad. Sci. USA 113, 11621–11626 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee, J.-Y. & Lu, H. Plasmodesmata: the battleground against intruders. Trends Plant Sci. 16, 201–210 (2011).

    CAS  PubMed  Google Scholar 

  11. Vatén, A. et al. Callose biosynthesis regulates symplastic trafficking during root development. Dev. Cell 21, 1144–1155 (2011).

    PubMed  Google Scholar 

  12. Tilsner, J. et al. Replication and trafficking of a plant virus are coupled at the entrances of plasmodesmata. J. Cell Biol. 201, 981–995 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Benitez-Alfonso, Y., Faulkner, C., Ritzenthaler, C. & Maule, A. J. Plasmodesmata: gateways to local and systemic virus infection. Mol. Plant. Microbe. Interact. 23, 1403–1412 (2010).

    CAS  PubMed  Google Scholar 

  14. Ding, B., Turgeon, R. & Parthasarathy, M. V. Substructure of freeze-substituted plasmodesmata. Protoplasma 169, 28–41 (1992).

    Google Scholar 

  15. Tilsner, J., Amari, K. & Torrance, L. Plasmodesmata viewed as specialised membrane adhesion sites. Protoplasma 248, 39–60 (2011).

    CAS  PubMed  Google Scholar 

  16. Knox, K. et al. Putting the squeeze on plasmodesmata: a role for RETICULONs in primary plasmodesmata formation. Plant Physiol. 168, 1563–1572 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Salmon, M. S. & Bayer, E. M. F. Dissecting plasmodesmata molecular composition by mass spectrometry-based proteomics. Front. Plant Sci. 3, 307 (2012).

    PubMed  Google Scholar 

  18. Simpson, C., Thomas, C., Findlay, K., Bayer, E. & Maule, A. J. An Arabidopsis GPI-anchor plasmodesmal neck protein with callose binding activity and potential to regulate cell-to-cell trafficking. Plant Cell 21, 581–594 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Thomas, C. L., Bayer, E. M., Ritzenthaler, C., Fernandez-Calvino, L. & Maule, A. J. Specific targeting of a plasmodesmal protein affecting cell-to-cell communication. PLoS Biol. 6, e7 (2008).

    PubMed  PubMed Central  Google Scholar 

  20. Fernandez-Calvino, L. et al. Arabidopsis plasmodesmal proteome. PLoS ONE 6, e18880 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee, J.-Y. et al. A plasmodesmata-localized protein mediates crosstalk between cell-to-cell communication and innate immunity in Arabidopsis. Plant Cell 23, 3353–3373 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Grison, M. S. et al. Specific membrane lipid composition is important for plasmodesmata function in Arabidopsis. Plant Cell 27, 1228–1250 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Prinz, W. A. Bridging the gap: membrane contact sites in signaling, metabolism, and organelle dynamics. J. Cell Biol. 205, 759–769 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Pérez-Sancho, J. et al. Stitching organelles: organization and function of specialized membrane contact sites in plants. Trends Cell Biol. 26, 705–717 (2016).

    PubMed  Google Scholar 

  25. Gallo, A., Vannier, C. & Galli, T. Endoplasmic reticulum–plasma membrane associations: structures and functions. Annu. Rev. Cell Dev. Biol. 32, 279–301 (2016).

    CAS  PubMed  Google Scholar 

  26. von Filseck, J. M. et al. Phosphatidylserine transport by ORP/Osh proteins is driven by phosphatidylinositol 4-phosphate. Science 349, 432–436 (2015).

    Google Scholar 

  27. Chang, C.-L. et al. Feedback regulation of receptor-induced Ca2+ signaling mediated by e-syt1 and nir2 at endoplasmic reticulum-plasma membrane junctions. Cell Rep. 5, 813–825 (2013).

    PubMed  Google Scholar 

  28. Giordano, F. et al. PI(4,5)P2-dependent and Ca2+-regulated ER–PM interactions mediated by the extended synaptotagmins. Cell 153, 1494–1509 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Chu, B.-B. et al. Cholesterol transport through lysosome-peroxisome membrane contacts. Cell 161, 291–306 (2015).

    CAS  PubMed  Google Scholar 

  30. Tilsner, J., Nicolas, W., Rosado, A. & Bayer, E. M. Staying tight: plasmodesmata membrane contact sites and the control of cell-to-cell connectivity. Annu. Rev. Plant Biol. 67, 337–364 (2016).

    CAS  PubMed  Google Scholar 

  31. Gisel, A., Barella, S., Hempel, F. D. & Zambryski, P. C. Temporal and spatial regulation of symplastic trafficking during development in Arabidopsis thaliana apices. Development 126, 1879–1889 (1999).

    CAS  PubMed  Google Scholar 

  32. Sivaguru, M. et al. Aluminum-induced 1,3-β-D-glucan inhibits cell-to-cell trafficking of molecules through plasmodesmata. A new mechanism of aluminum toxicity in plants. Plant Physiol. 124, 991–1006 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Li, W. et al. Callose deposition at plasmodesmata is a critical factor in restricting the cell-to-cell movement of soybean mosaic virus. Plant Cell Rep. 31, 905–916 (2012).

    CAS  PubMed  Google Scholar 

  34. Oparka, K. J. et al. Simple, but not branched, plasmodesmata allow the nonspecific trafficking of proteins in developing tobacco leaves. Cell 97, 743–754 (1999).

    CAS  PubMed  Google Scholar 

  35. Kim, I. & Zambryski, P. C. Cell-to-cell communication via plasmodesmata during Arabidopsis embryogenesis. Curr. Opin. Plant Biol. 8, 593–599 (2005).

    CAS  PubMed  Google Scholar 

  36. Schulz, A. Plasmodesmata widening accompanies the short-term increase in symplasmic phloem unloading in pea root tips under osmotic stress. Protoplasma 188, 22–37 (1995).

    Google Scholar 

  37. Brunkard, J. O., Runkel, A. M. & Zambryski, P. C. The cytosol must flow: intercellular transport through plasmodesmata. Curr. Opin. Cell Biol. 35, 13–20 (2015).

    CAS  PubMed  Google Scholar 

  38. Beck, M. et al. Nuclear pore complex structure and dynamics revealed by cryoelectron tomography. Science 306, 1387–1390 (2004).

    CAS  PubMed  Google Scholar 

  39. Overall, R. L., Wolfe, J. & Gunning, B. E. S. Intercellular communication in Azolla roots: I. Ultrastructure of plasmodesmata. Protoplasma 111, 134–150 (1982).

    Google Scholar 

  40. Tilney, L. G., Cooke, T. J., Connelly, P. S. & Tilney, M. S. The structure of plasmodesmata as revealed by plasmolysis, detergent extraction, and protease digestion. J. Cell Biol. 112, 739–747 (1991).

    CAS  PubMed  Google Scholar 

  41. Moore, R., Fondren, W. M., Koon, E. C. & Wang, C. L. The influence of gravity on the formation of amyloplasts in columella cells of Zea mays L. Plant Physiol. 82, 867–868 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Bennett, T. et al. SOMBRERO, BEARSKIN1, and BEARSKIN2 regulate root cap maturation in Arabidopsis. Plant Cell 22, 640–654 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Staehelin, L. a., Zheng, H. Q., Yoder, T. L., Smith, J. D. & Todd, P. Columella cells revisited: novel structures, novel properties, and a novel gravisensing model. Gravit. Space Biol. Bull. 13, 95–100 (2000).

    CAS  PubMed  Google Scholar 

  44. Dolan, L. et al. Cellular-organization of the Arabidopsis thaliana root. Development 119, 71–84 (1993).

    CAS  PubMed  Google Scholar 

  45. Hamamoto, L., Hawes, M. C. & Rost, T. L. The production and release of living root cap border cells is a function of root apical meristem type in dicotyledonous angiosperm plants. Ann. Bot. 97, 917–923 (2006).

    PubMed  PubMed Central  Google Scholar 

  46. Overall, R. L. & Blackman, L. M. A model of the macromolecular structure of plasmodesmata. Trends Plant Sci. 1, 307–311 (1996).

    Google Scholar 

  47. Oparka, K. J. Getting the message across: how do plant cells exchange macromolecular complexes? Trends Plant Sci. 9, 33–41 (2004).

    CAS  PubMed  Google Scholar 

  48. White, R. & Barton, D. The cytoskeleton in plasmodesmata: a role in intercellular transport? J. Exp. Bot. 62, 5249–5266 (2011).

    CAS  PubMed  Google Scholar 

  49. Radford, J. E. & White, R. G. Inhibitors of myosin, but not actin, alter transport through Tradescantia plasmodesmata. Protoplasma 248, 205–216 (2011).

    CAS  PubMed  Google Scholar 

  50. Mongrand, S., Stanislas, T., Bayer, E. M. F., Lherminier, J. & Simon-Plas, F. Membrane rafts in plant cells. Trends Plant Sci. 15, 656–663 (2010).

    CAS  PubMed  Google Scholar 

  51. Sevilem, I., Yadav, S. R. & Helariutta, Y. Plasmodesmata: channels for intercellular signaling during plant growth and development. 1217, 3–24 (2015).

  52. White, R. G. et al. Actin associated with plasmodesmata. Protoplasma 180, 169–184 (1994).

    CAS  Google Scholar 

  53. Radford, J. E. & White, R. G. Localization of a myosin-like protein to plasmodesmata. Plant J. 14, 743–750 (1998).

    CAS  PubMed  Google Scholar 

  54. Faulkner, C. R., Blackman, L. M., Collings, D. A., Cordwell, S. J. & Overall, R. L. Anti-tropomyosin antibodies co-localise with actin microfilaments and label plasmodesmata. Eur. J. Cell Biol. 88, 357–369 (2009).

    CAS  PubMed  Google Scholar 

  55. Ding, B., Kwon, M. & Warnberg, L. Evidence that actin filaments are involved in controlling the permeability of plasmodesmata in tobacco mesophyll. Plant J. 10, 157–164 (1996).

    Google Scholar 

  56. Sheahan, M. B., Staiger, C. J., Rose, R. J. & McCurdy, D. W. A green fluorescent protein fusion to actin-binding domain 2 of Arabidopsis fimbrin highlights new features of a dynamic actin cytoskeleton in live plant cells. Plant Physiol. 136, 3968–3978 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Boutté, Y. et al. Endocytosis restricts Arabidopsis KNOLLE syntaxin to the cell division plane during late cytokinesis. EMBO J. 29, 546–558 (2010).

    PubMed  Google Scholar 

  58. Marais, C. et al. The Qb-SNARE Memb11 interacts specifically with Arf1 in the Golgi apparatus of Arabidopsis thaliana. J. Exp. Bot. 66, 6665–6678 (2015).

    CAS  PubMed  Google Scholar 

  59. Bradley, M. O. Microfilaments and cytoplasmic streaming: inhibition of streaming with cytochalasin. J. Cell Sci. 12, 327–343 (1973).

    CAS  PubMed  Google Scholar 

  60. Bayer, E., Thomas, C. L. & Maule, A. J. Plasmodesmata in Arabidopsis thaliana suspension cells. Protoplasma 223, 93–102 (2004).

    CAS  PubMed  Google Scholar 

  61. Hawes, C. R., Juniper, B. E. & Horne, J. C. Low and high voltage electron microscopy of mitosis and cytokinesis in maize roots. Planta 152, 397–407 (1981).

    CAS  PubMed  Google Scholar 

  62. Hepler, P. K. Endoplasmic reticulum in the formation of the cell plate and plasmodesmata. Protoplasma 111, 121–133 (1982).

    Google Scholar 

  63. Rutschow, H. L., Baskin, T. I. & Kramer, E. M. Regulation of solute flux through plasmodesmata in the root meristem. Plant Physiol. 155, 1817–1826 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang, N. & Fisher, D. B. The use of fluorescent tracers to characterize the post-phloem transport pathway in maternal tissues of developing wheat grains. Plant Physiol. 104, 17–27 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Terry, B. R., Matthews, E. K. & Haseloff, J. Molecular characterization of recombinant green fluorescent protein by fluorescence correlation microscopy. Biochem. Biophys. Res. Commun. 217, 21–27 (1995).

    CAS  PubMed  Google Scholar 

  66. Imlau, A., Truernit, E. & Sauer, N. Cell-to-cell and long-distance trafficking of the green fluorescent protein in the phloem and symplastic unloading of the protein into sink tissues. Plant Cell 11, 309–322 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Blackman, L. M., Harper, J. D. I. & Overall, R. L. Localization of a centrin-like protein to higher plant plasmodesmata. Eur. J. Cell Biol. 78, 297–304 (1999).

    CAS  PubMed  Google Scholar 

  68. Fernández-Busnadiego, R., Saheki, Y. & De Camilli, P. Three-dimensional architecture of extended synaptotagmin-mediated endoplasmic reticulum–plasma membrane contact sites. Proc. Natl Acad. Sci. USA 112, E2004–E2013 (2015).

    PubMed  PubMed Central  Google Scholar 

  69. Li, F. et al. Energetics and dynamics of SNAREpin folding across lipid bilayers. Nat. Struct. Mol. Biol. 14, 890–896 (2007).

    CAS  PubMed  Google Scholar 

  70. Olesen, P. The neck constriction in plasmodesmata. Planta 144, 349–358 (1979).

    CAS  PubMed  Google Scholar 

  71. Burch-Smith, T. M. & Zambryski, P. C. Loss of increased size exclusion limit (ise)1 or ise2 increases the formation of secondary plasmodesmata. Curr. Biol. 20, 989–993 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Bell, K. & Oparka, K. Imaging plasmodesmata. Protoplasma 248, 9–25 (2011).

    PubMed  Google Scholar 

  73. Robinson-Beers, K. & Evert, R. F. Ultrastructure of and plasmodesmatal frequency in mature leaves of sugarcane. Planta 184, 291–306 (1991).

    CAS  PubMed  Google Scholar 

  74. Eisenberg-Bord, M., Shai, N., Schuldiner, M. & Bohnert, M. A tether is a tether is a tether: tethering at membrane contact sites. Dev. Cell 39, 395–409 (2016).

    CAS  PubMed  Google Scholar 

  75. Duckett, C. M., Oparka, K. J., Prior, D. a M., Dolan, L. & Roberts, K. Dye-coupling in the root epidermis of Arabidopsis is progressively reduced during development. Development 120, 3247–3255 (1994).

    CAS  Google Scholar 

  76. Badelt, K., White, R. G., Overall, R. L. & Vesk, M. Ultrastructural specializations of the cell wall sleeve around plasmodesmata. Am. J. 81, 1422–1427 (2016).

    Google Scholar 

  77. Kim, I., Kobayashi, K., Cho, E. & Zambryski, P. C. Subdomains for transport via plasmodesmata corresponding to the apical-basal axis are established during Arabidopsis embryogenesis. Proc. Natl Acad. Sci. USA 102, 11945–11950 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Kim, I., Cho, E., Crawford, K., Hempel, F. D. & Zambryski, P. C. Cell-to-cell movement of GFP during embryogenesis and early seedling development in Arabidopsis. Proc. Natl. Acad. Sci. USA 102, 2227–2231 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Messaoudi, C., Boudier, T., Sanchez Sorzano, C. O. & Marco, S. Tomoj: tomography software for three-dimensional reconstruction in transmission electron microscopy. BMC Bioinformatics 8, 288 (2007).

    Google Scholar 

  80. Sorzano, C. O. S. et al. Marker-free image registration of electron tomography tilt-series. BMC Bioinformatics 10, 124 (2009).

    PubMed  PubMed Central  Google Scholar 

  81. Lucocq, J. Unbiased 3-D quantitation of ultrastructure in cell biology. Trends Cell Biol. 3, 354–358 (1993).

    CAS  PubMed  Google Scholar 

  82. Sterio, D. C. The unbiased estimation of number and sizes of arbitrary particles using the disector. J. Microsc. 134, 127–136 (1984).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants by the Region Aquitaine (to E.M.B) and PEPS (Initial Support for Exploratory Projects to E.M.B) and National Agency for Research (Grant ANR-14-CE19-0006-01 to E.M.B). Electron and fluorescence microscopy analyses were performed at the Bordeaux Imaging Centre (http://www.bic.u-bordeaux.fr/). The Region Aquitaine also supported the acquisition of the electron microscope (grant no. 2011 13 04 007 PFM). We thank Y. Benitez-Alfonso for providing the Arabidopsis PA–GFP lines and S. Mongrand, V. Arondel, Y. Boutté, Y. Jaillais and C. Hawes for critical review of the article before submission.

Author information

Authors and Affiliations

Authors

Contributions

Electron microscopy and associated-quantitative analyses were done by W.J.N. with the help of S.T. and L.B. M.S.G. performed the cell-to-cell connectivity essays with the help of W.J.N and L.B. F.P.C. and L.B. provided technical support for the FRAP experiments and with image quantification and acquisition. All statistical analyses were run by W.J.N. and M.S.G. A.G. and M.F. performed the control tests for latrunculin and cytochalasin treatments in the roots. The manuscript was written by E.M.B. and W.J.N. with contributions of L.B., K.O. and J.T. Research was designed by E.M.B.

Corresponding authors

Correspondence to Lysiane Brocard or Emmanuelle M. Bayer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figure 1, Supplementary Figure 3, Supplementary Figure 5, Supplementary Figure 8. (PDF 5630 kb)

Supplementary Video 2: Cytoplasmic streaming of Golgi vesicles is altered upon inhibition of actin polymerization

Timelapse of Mb12:YFP lines (ac) and Ng1:GFP lines (df) taken at t = 0, 30 min and 1 h of treatment at 1 image every 5 seconds. (AVI 3575 kb)

Supplementary Video 4: Type I plasmodesmata in Arabidopsis cultured cells

Electron tomography volume showing a typical type I plasmodesmata pore with no visible cytoplasmic sleeve. (AVI 29289 kb)

Supplementary Video 6: Type II plasmodesmata in Arabidopsis cultured cells

Electron tomography volume of the type II plasmodesmata shown in Supplementary Fig. 5a,b. (AVI 27965 kb)

Supplementary Video 7: Type II plasmodesmata in Arabidopsis cultured cells

Electron tomography volume of the type II plasmodesmata exhibited in Supplementary Fig. 5c,d. (AVI 17357 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicolas, W., Grison, M., Trépout, S. et al. Architecture and permeability of post-cytokinesis plasmodesmata lacking cytoplasmic sleeves. Nature Plants 3, 17082 (2017). https://doi.org/10.1038/nplants.2017.82

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2017.82

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing