Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Subunit and chlorophyll organization of the plant photosystem II supercomplex

Abstract

Photosystem II (PSII) is a light-driven protein, involved in the primary reactions of photosynthesis. In plant photosynthetic membranes PSII forms large multisubunit supercomplexes, containing a dimeric core and up to four light-harvesting complexes (LHCs), which act as antenna proteins. Here we solved a three-dimensional (3D) structure of the C2S2M2 supercomplex from Arabidopsis thaliana using cryo-transmission electron microscopy (cryo-EM) and single-particle analysis at an overall resolution of 5.3 Å. Using a combination of homology modelling and restrained refinement against the cryo-EM map, it was possible to model atomic structures for all antenna complexes and almost all core subunits. We located all 35 chlorophylls of the core region based on the cyanobacterial PSII structure, whose positioning is highly conserved, as well as all the chlorophylls of the LHCII S and M trimers. A total of 13 and 9 chlorophylls were identified in CP26 and CP24, respectively. Energy flow from LHC complexes to the PSII reaction centre is proposed to follow preferential pathways: CP26 and CP29 directly transfer to the core using several routes for efficient transfer; the S trimer is directly connected to CP43 and the M trimer can efficiently transfer energy to the core through CP29 and the S trimer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Architecture of the C2S2M2 particle at an average resolution of 5.3 Å.
Figure 2: Location of all the different subunits of the C2S2M2 particle.
Figure 3: Chlorophylls of the supercomplex.
Figure 4: Flexibilities in the C2S2M2 supercomplex from Arabidopsis investigated by negative stain single-particle electron microscopy.
Figure 5: Energy flow within C2S2M2 particles.

Similar content being viewed by others

References

  1. Dekker, J. P. & Van Grondelle, R. Primary charge separation in photosystem II. Photosynth. Res. 63, 195–208 (2000).

    Article  CAS  Google Scholar 

  2. Nelson, N. & Yocum, C. F. Structure and function of photosystems I and II. Ann. Rev. Plant Biol. 57, 521–565 (2006).

    Article  CAS  Google Scholar 

  3. Mazor, Y., Borovikova, A. & Nelson, N. The structure of plant photosystem I super-complex at 2.8 Å resolution. eLife 4, 213 (2015).

    Article  Google Scholar 

  4. Ferreira, K. N., Iverson, T. M., Maghlaoui, K., Barber, J. & Iwata, S. Architecture of the photosynthetic oxygen-evolving center. Science 303, 1831–1838 (2004).

    Article  CAS  Google Scholar 

  5. Umena, Y., Kawakami, K., Shen, J. & Kamiya, N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473, 55–60 (2011).

    Article  CAS  Google Scholar 

  6. Suga, M. et al. Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses. Nature 517, 99–103 (2014).

    Article  Google Scholar 

  7. Ago, H. et al. Novel features of eukaryotic photosystem II revealed by its crystal structure analysis from a red alga. J. Biol. Chem. 291, 5676–5687 (2016).

    Article  CAS  Google Scholar 

  8. Wei, X. et al. Structure of spinach photosystem II–LHCII supercomplex at 3.2 Å resolution. Nature 534, 69–74 (2016).

    Article  CAS  Google Scholar 

  9. Bricker, T. M., Roose, J. L., Fagerlund, R. D., Frankel, L. K. & Eaton-Rye, J. J. The extrinsic proteins of photosystem II. Biochim. Biophys. Acta 1817, 121–142 (2012).

    Article  CAS  Google Scholar 

  10. Ifuku, K. Localization and functional characterization of the extrinsic subunits of photosystem II: an update. Biosc. Biotechnol. Biochem. 79, 1223–1231 (2015).

    Article  CAS  Google Scholar 

  11. Caffarri, S., Croce, R., Cattivelli, L. & Bassi, R. A look within LHCII: differential analysis of the Lhcb1−3 complexes building the major trimeric antenna complex of higher-plant photosynthesis. Biochemistry 43, 9467–9476 (2004).

    Article  CAS  Google Scholar 

  12. Kouřil, R., Dekker, J. P. & Boekema, E. J. Supramolecular organization of photosystem II in green plants. Biochim. Biophys. Acta 1817, 2–12 (2012).

    Article  Google Scholar 

  13. Nosek, L., Semchonok, D., Boekema, E. J., Ilik, P. & Kouril, R. Structural variability of plant photosystem II megacomplexes in thylakoid membranes. Plant J. 89, 104–111 (2017).

    Article  CAS  Google Scholar 

  14. Liu, Z. F. et al. Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428, 287–292 (2004).

    Article  CAS  Google Scholar 

  15. Standfuss, J., Terwisscha van Scheltinga, A. C., Lamborghini, M. & Kühlbrandt, W. Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Å resolution. EMBO J. 24, 919–928 (2005).

    Article  CAS  Google Scholar 

  16. Pan, X. et al. Structural insights into energy regulation of light-harvesting complex CP29 from spinach. Nat. Struct. Mol. Biol. 18, 309–315 (2011).

    Article  CAS  Google Scholar 

  17. Pan, X., Liu, Z., Li, M. & Chang, W. Architecture and function of plant light-harvesting complexes II. Curr. Opin. Struct. Biol. 23, 515–525 (2013).

    Article  CAS  Google Scholar 

  18. Caffarri, S., Tibiletti, T., Jennings, R. C. & Santabarbara, S. A. Comparison between plant photosystem I and photosystem II architecture and functioning. Curr. Protein Pept. Sci. 15, 296–331 (2014).

    Article  CAS  Google Scholar 

  19. Nogales, E. & Scheres, S. H. W. Cryo-EM: a unique tool for the visualization of macromolecular complexity. Mol. Cell 58, 677–689 (2015).

    Article  CAS  Google Scholar 

  20. Caffarri, S., Kouřil, R., Kereiche, S., Boekema, E. J. & Croce, R. Functional architecture of higher plant photosystem II supercomplexes. EMBO J. 28, 3052–3063 (2009).

    Article  CAS  Google Scholar 

  21. Li, X. P., Muller-Moule, P., Gilmore, A. M. & Niyogi, K. K. PsbS-dependent enhancement of feedback de-excitation protects photosystem II from photoinhibition. Proc. Natl Acad. Sci. USA 99, 15222–15227 (2002).

    Article  CAS  Google Scholar 

  22. Shi, L. X., Lorkovic, Z. J., Oelmüller, R. & Schröder, W. P. The low molecular mass PsbW protein is involved in the stabilization of the dimeric photosystem II complex in Arabidopsis thaliana. J. Biol. Chem. 275, 37945–37950 (2000).

    Article  CAS  Google Scholar 

  23. Caffarri, S., Passarini, F., Bassi, R. & Croce, R. A specific binding site for neoxanthin in the monomeric antenna proteins CP26 and CP29 of photosystem II. FEBS Lett. 581, 4704–4710 (2007).

    Article  CAS  Google Scholar 

  24. Passarini, F., Wientjes, E., Hienerwadel, R. & Croce, R. Molecular basis of light harvesting and photoprotection in CP24: unique features of the most recent antenna complex. J. Biol. Chem. 284, 29536–29546 (2009).

    Article  CAS  Google Scholar 

  25. Golan, T., Muller-Moule, P. & Niyogi, K. K. Photoprotection mutants of Arabidopsis thaliana acclimate to high light by increasing photosynthesis and specific antioxidants. Plant Cell Environ. 29, 879–887 (2006).

    Article  CAS  Google Scholar 

  26. Li, X. P. et al. A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403, 391–395 (2000).

    Article  CAS  Google Scholar 

  27. Roach, T. & Krieger-Liszkay, A. The role of the PsbS protein in the protection of photosystems I and II against high light in Arabidopsis thaliana. Biochim. Biophys. Acta 1817, 2158–2165 (2012).

    Article  CAS  Google Scholar 

  28. Shi, L., Hall, M., Funk, C. & Schröder, W. P. Photosystem II, a growing complex: updates on newly discovered components and low molecular mass proteins. Biochim. Biophys. Acta 1817, 13–25 (2012).

    Article  CAS  Google Scholar 

  29. Garcia-Cerdan, J. G. et al. The PsbW protein stabilizes the supramolecular organization of photosystem II in higher plants. Plant J. 65, 368–381 (2011).

    Article  CAS  Google Scholar 

  30. Crepin, A., Santabarbara, S. & Caffarri, S. Biochemical and spectroscopic characterization of highly stable photosystem II supercomplexes from Arabidopsis. J. Biol. Chem. 291, 19157–19171 (2014).

    Article  Google Scholar 

  31. Suorsa, M. et al. Psbr, a missing link in the assembly of the oxygen-evolving complex of plant photosystem II. J. Biol. Chem. 281, 145–150 (2006).

    Article  CAS  Google Scholar 

  32. Gerotto, C., Franchin, C., Arrigoni, G. & Morosinotto, T. In vivo identification of photosystem II light harvesting complexes interacting with Photosystem subunit S. Plant Physiol 168, 1747–1761 (2015).

    Article  CAS  Google Scholar 

  33. Correa-Galvis, V., Poschmann, G., Melzer, M., Stuehler, K. & Jahns, P. Psbs interactions involved in the activation of energy dissipation in Arabidopsis. Nat. Plants 2, 15225 (2016).

    Article  CAS  Google Scholar 

  34. Pagliano, C. et al. Proteomic characterization and three-dimensional electron microscopy study of PSII-LHCII supercomplexes from higher plants. Biochim. Biophys. Acta 1837, 1454–1462 (2014).

    Article  CAS  Google Scholar 

  35. Alboresi, A. et al. In silico and biochemical analysis of Physcomitrella patens photosynthetic antenna: identification of subunits which evolved upon land adaptation. PloS ONE 3, e2033 (2008).

    Article  Google Scholar 

  36. Kouřil, R., Nosek, L., Bartos, J., Boekema, E. J. & Ilík, P. Evolutionary loss of light-harvesting proteins Lhcb6 and Lhcb3 in major land plant groups—break-up of current dogma. New Phytol. 210, 808–814 (2016).

    Article  Google Scholar 

  37. Bassi, R., Croce, R., Cugini, D. & Sandona, D. Mutational analysis of a higher plant antenna protein provides identification of chromophores bound into multiple sites. Proc. Natl Acad. Sci. USA 96, 10056–10061 (1999).

    Article  CAS  Google Scholar 

  38. Kreisbeck, C. & Aspuru-Guzik, A. Efficiency of energy funneling in the photosystem II supercomplex of higher plants. Chemical Sci. 7, 4174–4183 (2016).

    Article  CAS  Google Scholar 

  39. Bennet, D. I. G., Amarnath, K. & Fleming, G. R. A structure-based model of energy transfer reveals the principles of light harvesting in photosystem II supercomplexes. J. Am. Chem. Soc. 135, 9164–9173 (2013).

    Article  Google Scholar 

  40. Qin, X., Suga, M., Kuang, T. & Shen, J. R. Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex. Science 348, 989–995 (2015).

    Article  CAS  Google Scholar 

  41. Raszewski, G. & Renger, S. Light harvesting in photosystem II core complexes is limited by the transfer to the trap: can the core complex turn into a photoprotective mode? J. Am. Chem. Soc. 130, 4431–4446 (2008).

    Article  CAS  Google Scholar 

  42. Ioannidis, N. E. & Kotzabasis, K. Could structural similarity of specific domains between animal globins and plant antenna proteins provide hints important for the photoprotection mechanism? J. Theor. Biol. 364, 71–79 (2015).

    Article  CAS  Google Scholar 

  43. van Amerongen, H. & Croce, R. Light harvesting in photosystem II. Photosynth. Res. 116, 251–263 (2013).

    Article  CAS  Google Scholar 

  44. Berthold, D. A., Babcock, G. T. & Yocum, C. F. A highly resolved, oxygen-evolving photosystem II preparation from spinach thylakoid membranes. FEBS Lett. 134, 231–234 (1981).

    Article  CAS  Google Scholar 

  45. Kouřil, R. et al. Structural characterization of a plant photosystem I and NAD(P)H dehydrogenase supercomplex. Plant J. 77, 568–576 (2014).

    Article  Google Scholar 

  46. Sorzano, C. O. S., de la Rosa-Trevin, J. M., Tama, F. & Jonic, S. Hybrid electron microscopy normal mode analysis graphical interface and protocol. J. Struct. Biol. 188, 134–141 (2014).

    Article  Google Scholar 

  47. Scheres, S. H. W. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    Article  CAS  Google Scholar 

  48. Vargas, J., Álvarez-Cabrera, A.-L., Marabini, R., Carazo, J. M. & Sorzano, C. O. S. Efficient initial volume determination from electron microscopy images of single particles. Bioinformatics 30, 2891–2898 (2014).

    Article  CAS  Google Scholar 

  49. Mindell, J. A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003).

    Article  Google Scholar 

  50. Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    Article  Google Scholar 

  51. Li, X. et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat. Methods 10, 584–590 (2013).

    Article  CAS  Google Scholar 

  52. Scheres, S. H.W. Beam-induced motion correction for sub-megadalton cryo-EM particles. eLife 3, e03665 (2014).

    Article  Google Scholar 

  53. Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).

    Article  CAS  Google Scholar 

  54. Scheres, S. H. W. & Chen, S. Prevention of overfitting in cryo-EM structure determination. Nat. Methods 9, 853–854 (2012).

    Article  CAS  Google Scholar 

  55. Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods 11, 63–65 (2013).

    Article  Google Scholar 

  56. de la Rosa-Trevin, J. M. et al. Xmipp 3.0: an improved software suite for image processing in electron microscopy. J. Struct. Biol. 184, 321–328 (2013).

    Article  CAS  Google Scholar 

  57. Pettersen, E. F. et al. UCSF chimera? A visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  Google Scholar 

  58. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article  CAS  Google Scholar 

  59. Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D 58, 1948–1954 (2002).

    Article  Google Scholar 

  60. Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D 68, 352–367 (2012).

    Article  CAS  Google Scholar 

  61. Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015).

    Article  CAS  Google Scholar 

  62. Touw, W. G. et al. A series of PDB-related databanks for everyday needs. Nucleic Acids Res. 43, D364–D368 (2015).

    Article  CAS  Google Scholar 

  63. Chen, V. B. et al. Molprobity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the FOM program ‘The thylakoid membrane—a dynamic switch (10TM02)’. S.C. is supported by the French National Research Agency Grant ANR-12-JSV8-0001-01. R.K. is supported by a Marie Curie Career Integration Grant call FP7-PEOPLE-2012-CIG and by grant LO1204 (Sustainable development of research in the Centre of the Region Haná). We acknowledge L. Franken and J. Dekker for discussions.

Author information

Authors and Affiliations

Authors

Contributions

L.S.v.B., G.T.O. and E.J.B. designed the research. S.C. isolated the supercomplex, L.S.v.B. and G.T.O. collected the data. L.S.v.B. performed the single-particle analysis. L.S.v.B., S.C., G.T.O. and A.-M.W.H.T. analysed the data. R.S.K and R.K. analysed the negative stain supercomplex data. L.S.v.B., S.C., G.T.O., A.-M.W.H.T. and E.J.B. wrote the article.

Corresponding author

Correspondence to Egbert J. Boekema.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–8. (PDF 1323 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Bezouwen, L., Caffarri, S., Kale, R. et al. Subunit and chlorophyll organization of the plant photosystem II supercomplex. Nature Plants 3, 17080 (2017). https://doi.org/10.1038/nplants.2017.80

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2017.80

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing