Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

MicroRNAs in crop improvement: fine-tuners for complex traits

Abstract

One of the most common challenges for both conventional and modern crop improvement is that the appearance of one desirable trait in a new crop variety is always balanced by the impairment of one or more other beneficial characteristics. The best way to overcome this problem is the flexible utilization of regulatory genes, especially genes that provide more efficient and precise regulation in a targeted manner. MicroRNAs (miRNAs), a type of short non-coding RNA, are promising candidates in this area due to their role as master modulators of gene expression at the post-transcriptional level, targeting messenger RNAs for cleavage or directing translational inhibition in eukaryotes. We herein highlight the current understanding of the biological role of miRNAs in orchestrating distinct agriculturally important traits by summarizing recent functional analyses of 65 miRNAs in 9 major crops worldwide. The integration of current miRNA knowledge with conventional and modern crop improvement strategies is also discussed.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distribution of miRNAs and their target genes.
Figure 2: Experimentally verified miRNA:trait relationships in rice.
Figure 3: Regulatory circuits orchestrated by miRNAs in rice.

Similar content being viewed by others

References

  1. Takeda, S. & Matsuoka, M. Genetic approaches to crop improvement: responding to environmental and population changes. Nat. Rev. Genet. 9, 444–457 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Brown, M. E. & Funk, C. C. Food security under climate change. Science 319, 580–581 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Fedoroff, N. V. The past, present and future of crop genetic modification. New Biotechnol. 27, 461–465 (2010).

    Article  CAS  Google Scholar 

  4. Lombardo, L., Coppola, G. & Zelasco, S. New technologies for insect-resistant and herbicide-tolerant plants. Trends Biotechnol. 34, 49–57 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Varshney, R. K., Hoisington, D. A. & Tyagi, A. K. Advances in cereal genomics and applications in crop breeding. Trends Biotechnol. 24, 490–499 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Gratten, J. & Visscher, P. M. Genetic pleiotropy in complex traits and diseases: implications for genomic medicine. Genome Med. 8, 78 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Voinnet, O. Origin, biogenesis, and activity of plant microRNAs. Cell 136, 669–687 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Chen, X. Small RNAs and their roles in plant development. Annu. Rev. Cell Dev. Biol. 25, 21–44 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sun, G. MicroRNAs and their diverse functions in plants. Plant Mol. Biol. 80, 17–36 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Zhou, M. & Luo, H. MicroRNA-mediated gene regulation: potential applications for plant genetic engineering. Plant Mol. Biol. 83, 59–75 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Zheng, L. L. & Qu, L. H. Application of microRNA gene resources in the improvement of agronomic traits in rice. Plant Biotechnol. J. 13, 329–336 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Guan, X., Song, Q. & Chen, Z. J. Polyploidy and small RNA regulation of cotton fiber development. Trends Plant Sci. 19, 516–528 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Jiao, Y. et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat. Genet. 42, 541–544 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Wang, S. et al. Control of grain size, shape and quality by OsSPL16 in rice. Nat. Genet. 44, 950–954 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Miura, K. et al. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat. Genet. 42, 545–549 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Si, L. et al. OsSPL13 controls grain size in cultivated rice. Nat. Genet. 48, 447–456 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Wang, L. et al. Coordinated regulation of vegetative and reproductive branching in rice. Proc. Natl Acad. Sci. USA 112, 15504–15509 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chuck, G., Cigan, A. M., Saeteurn, K. & Hake, S. The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nat. Genet. 39, 544–549 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Bhogale, S. et al. MicroRNA156: a potential graft-transmissible microRNA that modulates plant architecture and tuberization in Solanum tuberosum ssp. andigena. Plant Physiol. 164, 1011–1027 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Chen, W. et al. Tuning LeSPL–CNR expression by SlymiR157 affects tomato fruit ripening. Sci. Rep. 5, 7852 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chuck, G., Whipple, C., Jackson, D. & Hake, S. The maize SBP-box transcription factor encoded by tasselsheath4 regulates bract development and the establishment of meristem boundaries. Development 137, 1243–1250 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Ferreira e Silva, G. F. et al. microRNA156-targeted SPL/SBP box transcription factors regulate tomato ovary and fruit development. Plant J. 78, 604–618 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, X. et al. Over-expression of sly-miR156a in tomato results in multiple vegetative and reproductive trait alterations and partial phenocopy of the sft mutant. FEBS Lett. 585, 435–439 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Huang, J., Li, Z. & Zhao, D. Deregulation of the osmiR160 target gene OsARF18 causes growth and developmental defects with an alteration of auxin signaling in rice. Sci. Rep. 6, 29938 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li, Y. et al. Multiple rice microRNAs are involved in immunity against the blast fungus Magnaporthe oryzae. Plant Physiol. 164, 1077–1092 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Damodharan, S., Zhao, D. & Arazi, T. A common miRNA160-based mechanism regulates ovary patterning, floral organ abscission and lamina outgrowth in tomato. Plant J. 86, 458–471 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Nizampatnam, N. R., Schreier, S. J., Damodaran, S., Adhikari, S. & Subramanian, S. microRNA160 dictates stage-specific auxin and cytokinin sensitivities and directs soybean nodule development. Plant J. 84, 140–153 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Wang, Y. et al. MicroRNA167-directed regulation of the auxin response factors GmARF8a and GmARF8b is required for soybean nodulation and lateral root development. Plant Physiol. 168, 984–999 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu, N. et al. Down-regulation of AUXIN RESPONSE FACTORS 6 and 8 by microRNA 167 leads to floral development defects and female sterility in tomato. J. Exp. Bot. 65, 2507–2520 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhu, Q. H., Upadhyaya, N. M., Gubler, F. & Helliwell, C. A. Over-expression of miR172 causes loss of spikelet determinacy and floral organ abnormalities in rice (Oryza sativa). BMC Plant Biol. 9, 149 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee, Y. S., Lee, D. Y., Cho, L. H. & An, G. Rice miR172 induces flowering by suppressing OsIDS1 and SNB, two AP2 genes that negatively regulate expression of Ehd1 and florigens. Rice 7, 31 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lauter, N., Kampani, A., Carlson, S., Goebel, M. & Moose, S. P. microRNA172 down-regulates glossy15 to promote vegetative phase change in maize. Proc. Natl Acad. Sci. USA 102, 9412–9417 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chuck, G., Meeley, R., Irish, E., Sakai, H. & Hake, S. The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1. Nat. Genet. 39, 1517–1521 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Houston, K. et al. Variation in the interaction between alleles of HvAPETALA2 and microRNA172 determines the density of grains on the barley inflorescence. Proc. Natl Acad. Sci. USA 110, 16675–16680 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yan, Z. et al. miR172 regulates soybean nodulation. Mol. Plant Microbe Interact. 26, 1371–1377 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Nair, S. K. et al. Cleistogamous flowering in barley arises from the suppression of microRNA-guided HvAP2 mRNA cleavage. Proc. Natl Acad. Sci. USA 107, 490–495 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Martin, A. et al. Graft-transmissible induction of potato tuberization by the microRNA miR172. Development 136, 2873–2881 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Yang, C. et al. Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.). Plant Cell Environ. 36, 2207–2218 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Ori, N. et al. Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nat. Genet. 39, 787–791 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, C. et al. Suppression of jasmonic acid-mediated defense by viral-inducible microRNA319 facilitates virus infection in rice. Mol. Plant 9, 1302–1314 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Zhao, W. et al. Identification of jasmonic acid-associated microRNAs and characterization of the regulatory roles of the miR319/TCP4 module under root-knot nematode stress in tomato. J. Exp. Bot. 66, 4653–4667 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tsuji, H. et al. GAMYB controls different sets of genes and is differentially regulated by microRNA in aleurone cells and anthers. Plant J. 47, 427–444 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Wang, Y. et al. TamiR159 directed wheat TaGAMYB cleavage and its involvement in anther development and heat response. PLoS ONE 7, e48445 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Guan, X. et al. miR828 and miR858 regulate homoeologous MYB2 gene functions in Arabidopsis trichome and cotton fibre development. Nat. Commun. 5, 3050 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Li, J. et al. miRNA164-directed cleavage of ZmNAC1 confers lateral root development in maize (Zea mays L.). BMC Plant Biol. 12, 220 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Berger, Y. et al. The NAC-domain transcription factor GOBLET specifies leaflet boundaries in compound tomato leaves. Development 136, 823–832 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Fang, Y., Xie, K. & Xiong, L. Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice. J. Exp. Bot. 65, 2119–2135 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Feng, H. et al. The target gene of tae-miR164, a novel NAC transcription factor from the NAM subfamily, negatively regulates resistance of wheat to stripe rust. Mol. Plant Pathol. 15, 284–296 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Che, R. et al. Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nat. Plants 2, 15195 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Duan, P. et al. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nat. Plants 2, 15203 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Gao, F. et al. Blocking miR396 increases rice yield by shaping inflorescence architecture. Nat. Plants 2, 15196 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Liu, H. et al. OsmiR396d-regulated OsGRFs function in floral organogenesis in rice through binding to their targets OsJMJ706 and OsCR4. Plant Physiol. 165, 160–174 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hu, J. et al. A rare allele of GS2 enhances grain size and grain yield in rice. Mol. Plant 8, 1455–1465 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Hewezi, T., Maier, T. R., Nettleton, D. & Baum, T. J. The Arabidopsis microRNA396-GRF1/GRF3 regulatory module acts as a developmental regulator in the reprogramming of root cells during cyst nematode infection. Plant Physiol. 159, 321–335 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Guo, S. et al. The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14. Nat. Commun. 4, 1566 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Yan, Y., Wang, H., Hamera, S., Chen, X. & Fang, R. miR444a has multiple functions in the rice nitrate-signaling pathway. Plant J. 78, 44–55 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Wang, H. et al. A signaling cascade from miR444 to RDR1 in rice antiviral RNA silencing pathway. Plant Physiol. 170, 2365–2377 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Iwamoto, M. & Tagiri, A. MicroRNA-targeted transcription factor gene RDD1 promotes nutrient ion uptake and accumulation in rice. Plant J. 85, 466–477 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Curaba, J., Talbot, M., Li, Z. Y. & Helliwell, C. Over-expression of microRNA171 affects phase transitions and floral meristem determinancy in barley. BMC Plant Biol. 13, 6 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gao, S. et al. A cotton miRNA is involved in regulation of plant response to salt stress. Sci. Rep. 6, 19736 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhao, X. Y. et al. The tae-miR408-mediated control of TaTOC1 genes transcription is required for the regulation of heading time in wheat. Plant Physiol. 170, 1578–1594 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Juarez, M. T., Kui, J. S., Thomas, J., Heller, B. A. & Timmermans, M. C. P. microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428, 84–88 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Tang, J. et al. Semi-dominant mutations in the CC-NB-LRR-type R gene, NLS1, lead to constitutive activation of defense responses in rice. Plant J. 66, 996–1007 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. de Vries, S., Kloesges, T. & Rose, L. E. Evolutionarily dynamic, but robust, targeting of resistance genes by the miR482/2118 gene family in the Solanaceae. Genome Biol. Evol. 7, 3307–3321 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Li, F. et al. MicroRNA regulation of plant innate immune receptors. Proc. Natl Acad. Sci. USA 109, 1790–1795 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shivaprasad, P. V. et al. A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs. Plant Cell 24, 859–874 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhu, Q. H. et al. miR482 regulation of NBS-LRR defense genes during fungal pathogen infection in cotton. PLoS ONE 8, e84390 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ouyang, S. Q. et al. MicroRNAs suppress NB domain genes in tomato that confer resistance to Fusarium oxysporum. PLoS Pathog. 10, e1004464 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yang, L. et al. Overexpression of potato miR482e enhanced plant sensitivity to Verticillium dahliae infection. J. Integr. Plant Biol. 57, 1078–1088 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Wei, C., Kuang, H., Li, F. & Chen, J. The I2 resistance gene homologues in Solanum have complex evolutionary patterns and are targeted by miRNAs. BMC Genomics 15, 743 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu, J. et al. The miR9863 family regulates distinct Mla alleles in barley to attenuate NLR receptor-triggered disease resistance and cell-death signaling. PLoS Genet. 10, e1004755 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang, T. et al. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. Nat. Plants 2, 16153 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Weiberg, A. et al. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342, 118–123 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fan, Y. et al. PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice. Proc. Natl Acad. Sci. USA 13, 15144–15149 (2016).

    Article  CAS  Google Scholar 

  75. Zhang, Y. C. et al. Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. Nat. Biotechnol. 31, 848–852 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Li, X. et al. MicroRNA393 is involved in nitrogen-promoted rice tillering through regulation of auxin signal transduction in axillary buds. Sci. Rep. 6, 32158 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Xia, K. et al. OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice. PLoS ONE 7, e30039 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yang, J. H., Han, S. J., Yoon, E. K. & Lee, W. S. ‘Evidence of an auxin signal pathway, microRNA167-ARF8-GH3, and its response to exogenous auxin in cultured rice cells’. Nucleic Acids Res. 34, 1892–1899 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bian, H. et al. Distinctive expression patterns and roles of the miRNA393/TIR1 homolog module in regulating flag leaf inclination and primary and crown root growth in rice (Oryza sativa). New Phytol. 196, 149–161 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Hu, B. et al. LEAF TIP NECROSIS1 plays a pivotal role in the regulation of multiple phosphate starvation responses in rice. Plant Physiol. 156, 1101–1115 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hu, B. et al. microRNA399 is involved in multiple nutrient responses in rice. Front. Plant Sci. 6, 188 (2015).

    PubMed  PubMed Central  Google Scholar 

  82. Lin, S. I. et al. Complex regulation of two target genes encoding SPX-MFS proteins by rice miR827 in response to phosphate starvation. Plant Cell Physiol. 51, 2119–2131 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Guo, H. S., Xie, Q., Fei, J. F. & Chua, N. H. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell 17, 1376–1386 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Allen, E., Xie, Z., Gustafson, A. M. & Carrington, J. C. microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121, 207–221 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Cuperus, J. T., Fahlgren, N. & Carrington, J. C. Evolution and functional diversification of MIRNA genes. Plant Cell 23, 431–442 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wu, J. et al. Viral-inducible Argonaute18 confers broad-spectrum virus resistance in rice by sequestering a host microRNA. eLife 4, e05733 (2015).

    Article  CAS  PubMed Central  Google Scholar 

  87. Varallyay, E., Valoczi, A., Agyi, A., Burgyan, J. & Havelda, Z. Plant virus-mediated induction of miR168 is associated with repression of ARGONAUTE1 accumulation. EMBO J. 29, 3507–3519 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Xian, Z. et al. miR168 influences phase transition, leaf epinasty, and fruit development via SlAGO1s in tomato. J. Exp. Bot. 65, 6655–6666 (2014).

    Article  CAS  PubMed  Google Scholar 

  89. Xu, W., Meng, Y. & Wise, R. P. Mla- and Rom1-mediated control of microRNA398 and chloroplast copper/zinc superoxide dismutase regulates cell death in response to the barley powdery mildew fungus. New Phytol. 201, 1396–412 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. Zhang, X. et al. Over-expression of microRNA169 confers enhanced drought tolerance to tomato. Biotechnol. Lett. 33, 403–409 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Li, W. X. et al. The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell 20, 2238–2251 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Budak, H. & Akpinar, B. A. Plant miRNAs: biogenesis, organization and origins. Funct. Integr. Genomics 15, 523–531 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Nozawa, M., Miura, S. & Nei, M. Origins and evolution of microRNA genes in plant species. Genome Biol. Evol. 4, 230–239 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Taylor, R. S., Tarver, J. E., Hiscock, S. J. & Donoghue, P. C. Evolutionary history of plant microRNAs. Trends Plant Sci. 19, 175–182 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Campo, S. et al. Identification of a novel microRNA (miRNA) from rice that targets an alternatively spliced transcript of the Nramp6 (Natural resistance-associated macrophage protein 6) gene involved in pathogen resistance. New Phytol. 199, 212–227 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Franco-Zorrilla, J. M. et al. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat. Genet. 39, 1033–1037 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Niu, Q. W. et al. Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat. Biotechnol. 24, 1420–1428 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Liu, Q. & Chen, Y. Q. The potential roles of microRNAs in molecular breeding. Methods Mol. Biol. 877, 303–311 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Liu, Q., Wang, H., Hu, H. & Zhang, H. Genome-wide identification and evolutionary analysis of positively selected miRNA genes in domesticated rice. Mol. Genet. Genomics 290, 593–602 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Liu, T. et al. Global investigation of the co-evolution of MIRNA genes and microRNA targets during soybean domestication. Plant J. 85, 396–409 (2016).

    Article  CAS  PubMed  Google Scholar 

  101. Wang, C. M. et al. Loop nucleotide polymorphism in a putative miRNA precursor associated with seed length in rice (Oryza sativa L.). Int. J. Biol. Sci. 9, 578–586 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhao, M. et al. Regulation of OsmiR156h through alternative polyadenylation improves grain yield in rice. PLoS ONE 10, e0126154 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhao, P. et al. Investigating the molecular genetic basis of heterosis for internode expansion in maize by microRNA transcriptomic deep sequencing. Funct. Integr. Genomics 15, 261–270 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Li, A. L. et al. mRNA and small RNA transcriptomes reveal insights into dynamic homoeolog regulation of allopolyploid heterosis in nascent hexaploid wheat. Plant Cell 26, 1878–1900 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Fang, R., Li, L. & Li, J. Spatial and temporal expression modes of MicroRNAs in an elite rice hybrid and its parental lines. Planta 238, 259–269 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Shivaprasad, P. V., Dunn, R. M., Santos, B. A., Bassett, A. & Baulcombe, D. C. Extraordinary transgressive phenotypes of hybrid tomato are influenced by epigenetics and small silencing RNAs. EMBO J. 31, 257–266 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Shen, Y. et al. Cytoplasmic male sterility-regulated novel microRNAs from maize. Funct. Integr. Genomics 11, 179–191 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. Yan, J., Zhang, H., Zheng, Y. & Ding, Y. Comparative expression profiling of miRNAs between the cytoplasmic male sterile line MeixiangA and its maintainer line MeixiangB during rice anther development. Planta 241, 109–123 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Shan, Q. et al. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol. 31, 686–688 (2013).

    Article  CAS  PubMed  Google Scholar 

  110. Li, J., Sun, Y., Du, J., Zhao, Y. & Xia, L. Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system. Mol. Plant 10, 526–529 (2017).

    Article  CAS  PubMed  Google Scholar 

  111. Barrangou, R. et al. Advances in CRISPR-Cas9 genome engineering: lessons learned from RNA interference. Nucleic Acids Res. 43, 3407–3419 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Li, J. et al. Gene replacements and insertions in rice by intron targeting using CRISPR–Cas9. Nat. Plants 2, 16139 (2016).

    Article  CAS  PubMed  Google Scholar 

  113. Zong, Y. et al. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat. Biotechnol. 35, 438–440 (2017).

    Article  CAS  PubMed  Google Scholar 

  114. Lu, Y. & Zhu, J. K. Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system. Mol. Plant 10, 523–525 (2017).

    Article  CAS  PubMed  Google Scholar 

  115. Fukuoka, S. et al. Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 325, 998–1001 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Tian, C., Zuo, Z. & Qiu, J. L. Identification and characterization of ABA-responsive microRNAs in rice. J. Genet. Genomics 42, 393–402 (2015).

    Article  CAS  PubMed  Google Scholar 

  117. Du, H. et al. A GH3 family member, OsGH3–2, modulates auxin and abscisic acid levels and differentially affects drought and cold tolerance in rice. J. Exp. Bot. 63, 6467–6480 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ding, Y., Ye, Y., Jiang, Z., Wang, Y. & Zhu, C. MicroRNA390 is involved in cadmium tolerance and accumulation in rice. Front. Plant Sci. 7, 235 (2016).

    PubMed  PubMed Central  Google Scholar 

  119. Yuan, N. et al. Heterologous expression of a rice miR395 gene in Nicotiana tabacum impairs sulfate homeostasis. Sci. Rep. 6, 28791 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wu, J. G. et al. ROS accumulation and antiviral defence control by microRNA528 in rice. Nat. Plants 3, 16203 (2017).

    Article  CAS  PubMed  Google Scholar 

  121. Nosaka, M. et al. Role of transposon-derived small RNAs in the interplay between genomes and parasitic DNA in rice. PLoS Genet. 8, e1002953 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Xia, K. et al. Rice microRNA osa-miR1848 targets the obtusifoliol 14a-demethylase gene OsCYP51G3 and mediates the biosynthesis of phytosterols and brassinosteroids during development and in response to stress. New Phytol. 208, 790–802 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. Xia, K. et al. OsWS1 involved in cuticular wax biosynthesis is regulated by osa-miR1848. Plant Cell Environ. 38, 2662–2673 (2015).

    Article  CAS  PubMed  Google Scholar 

  124. Feng, H. et al. Monodehydroascorbate reductase gene, regulated by the wheat PN-2013 miRNA, contributes to adult wheat plant resistance to stripe rust through ROS metabolism. Biochim. Biophys. Acta 1839, 1–12 (2014).

    Article  CAS  PubMed  Google Scholar 

  125. Feng, H. et al. Target of tae-miR408, a chemocyanin-like protein gene (TaCLP1), plays positive roles in wheat response to high-salinity, heavy cupric stress and stripe rust. Plant Mol. Biol. 83, 433–443 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. Buxdorf, K. et al. Identification and characterization of a novel miR159 target not related to MYB in tomato. Planta 232, 1009–1022 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Jia, X. et al. Small tandem target mimic-mediated blockage of microRNA858 induces anthocyanin accumulation in tomato. Planta 242, 283–293 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Wang, Y. et al. Function and evolution of a microRNA that regulates a Ca2+-ATPase and triggers the formation of phased small interfering RNAs in tomato reproductive growth. Plant Cell 23, 3185–3203 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants from the Chinese Academy of Sciences (XDA08010400), the National Key Research and Development Program of China (2016YFD0101801), and the National Natural Science Foundation of China (31571248 and 31201182). We apologize to our colleagues whose work was not included or sufficiently discussed in this article because of space restrictions.

Author information

Authors and Affiliations

Authors

Contributions

J.T. and C.C. wrote this article.

Corresponding authors

Correspondence to Jiuyou Tang or Chengcai Chu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Chu, C. MicroRNAs in crop improvement: fine-tuners for complex traits. Nature Plants 3, 17077 (2017). https://doi.org/10.1038/nplants.2017.77

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2017.77

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing