Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication


Grain size is one of the most important components of grain yield and selecting large seeds has been a main target during plant domestication. Surprisingly, the grain of African cultivated rice (Oryza glaberrima Steud.) typically is smaller than that of its progenitor, Oryza barthii. Here we report the cloning and characterization of a quantitative trait locus, GL4, controlling the grain length on chromosome 4 in African rice, which regulates longitudinal cell elongation of the outer and inner glumes. Interestingly, GL4 also controls the seed shattering phenotype like its orthologue SH4 gene in Asian rice. Our data show that a single-nucleotide polymorphism (SNP) mutation in the GL4 gene resulted in a premature stop codon and led to small seeds and loss of seed shattering during African rice domestication. These results provide new insights into diverse domestication practices in African rice, and also pave the way for enhancing crop yield to meeting the challenge of cereal demand in West Africa.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Characterization of the grains traits between African cultivated rice IRGC102305 and introgression line GIL25.
Figure 2: Map-based cloning of GL4.
Figure 3: Identification of the causative mutation for the GL4 gene.
Figure 4: Comparison of the effects of different GL4 alleles.
Figure 5: Evolutionary analysis of GL4/SH4.


  1. United Nations-Department of Economic and Social Affairs. World Population Prospects, The 2015 Revision (United Nations, New York, 2015).

  2. Martin, K. I. et al. Can sub-Saharan Africa feed itself? Proc. Natl Acad. Sci. USA 113, 14964–14969 (2016).

    Article  Google Scholar 

  3. Sweeney, M. & McCouch, S. The complex history of the domestication of rice. Ann. Bot. 100, 951–957 (2007).

    Article  Google Scholar 

  4. Harlan, J., De Wet, J. & Stemler, A. in Origins of African Plant Domestication (ed. Harlan, J. R. ) 3–20 (Mouton Publishers, 1976).

    Book  Google Scholar 

  5. Wang, M. et al. The genome sequence of African rice (Oryza glaberrima) and evidence for independent domestication. Nat. Genet. 46, 982–988 (2014).

    CAS  Article  Google Scholar 

  6. Meyer, R. S. et al. Domestication history and geographical adaptation inferred from a SNP map of African rice. Nat. Genet. 48, 1083–1088 (2016).

    CAS  Article  Google Scholar 

  7. Linares, O. F. African rice (Oryza glaberrima): history and future potential. Proc. Natl Acad. Sci. USA 99, 16360–16365 (2002).

    CAS  Article  Google Scholar 

  8. Rhodes, E. R., Jalloh, A. & Diouf, A. Review of Research and Policy for Climate Change Adaptation in the Agriculture Sector of West Africa (AfricaInteract/FAC, 2014).

  9. Jones, M. P., Dingkuhn, M., Aluko, G. K. & Semon, M. Interspecific Oryza sativa L. x O. glaberrima Steud. progenies in upland rice improvement. Euphytica 92, 237–246 (1997).

    Article  Google Scholar 

  10. Sarla, N. & Swamy, B. P. Oryza glaberrima: a source for the improvement of Oryza sativa. Curr. Sci. 89, 955–963 (2005).

    Google Scholar 

  11. Dorian, F. & Robin, A. Seed dispersal and crop domestication: shattering, germination and seasonality in evolution under cultivation. Annu. Plant Rev. 38, 238–295 (2009).

    Google Scholar 

  12. Meyer, R. S. & Purugganan, M. D. Evolution of crop species: genetics of domestication and diversification. Nat. Rev. Genet. 14, 840–852 (2013).

    CAS  Article  Google Scholar 

  13. Gegas, V. C. et al. A genetic framework for grain size and shape variation in wheat. Plant Cell 22, 1046–1056 (2010).

    CAS  Article  Google Scholar 

  14. Han, L. et al. Fine mapping of qGW1, a major QTL for grain weight in sorghum. Theor. Appl. Genet. 128, 1813–1825 (2015).

    CAS  Article  Google Scholar 

  15. Zuo, J. R. & Li, J. Y. Molecular genetic dissection of quantitative trait loci regulating rice grain size. Annu. Rev. Genet. 48, 99–118 (2014).

    CAS  Article  Google Scholar 

  16. Song, X., Huang, W., Shi, M., Zhu, M. & Lin, H. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat. Genet. 39, 623–630 (2007).

    CAS  Article  Google Scholar 

  17. Shomura, A. et al. Deletion in a gene associated with grain size increased yields during rice domestication. Nat. Genet. 40, 1023–1028 (2008).

    CAS  Article  Google Scholar 

  18. Li, Y. et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat. Genet. 43, 1266–1269 (2011).

    CAS  Article  Google Scholar 

  19. Ishimaru, K. et al. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat. Genet. 45, 707–711 (2013).

    CAS  Article  Google Scholar 

  20. Wang, S. et al. Control of grain size, shape and quality by OsSPL16 in rice. Nat. Genet. 44, 950–954 (2012).

    CAS  Article  Google Scholar 

  21. Che, R. et al. Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nat. Plants 2, 15195 (2015).

    Article  Google Scholar 

  22. Duan, P. et al. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nat. Plants 2, 15203 (2015).

    Article  Google Scholar 

  23. Wang, Y. et al. Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat. Genet. 47, 944–948 (2015).

    CAS  Article  Google Scholar 

  24. Wang, S. et al. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat. Genet. 47, 949–954 (2015).

    CAS  Article  Google Scholar 

  25. Mao, H. et al. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc. Natl Acad. Sci. USA 107, 19579–19584 (2010).

    CAS  Article  Google Scholar 

  26. Si, L. et al. OsSPL13 control grain size in cultivated rice. Nat. Genet. 48, 447–456 (2016).

    CAS  Article  Google Scholar 

  27. Katayama, T. C. & Sumi, A. Studies on agronomic traits of Africa rice (Oryza glaberrima steud.), 3: some grain morphological aspects of domestication and decrement. Jpn. J. Crop. Sci. 64, 807–814 (1995).

    Article  Google Scholar 

  28. Li, C., Zhou, A. & Sang, T. Rice domestication by reducing shattering. Science 311, 1936–1939 (2006).

    CAS  Article  Google Scholar 

  29. Lin, Z. et al. Origin of seed shattering in rice (Oryza sativa L.). Planta 226, 11–20 (2007).

    CAS  Article  Google Scholar 

  30. Huang, R. Y. et al. Genetic bases of rice grain shape: so many genes, so little known. Trends Plant Sci. 18, 218–226 (2013).

    CAS  Article  Google Scholar 

  31. Tang, W. et al. SNP-based analysis of genetic diversity reveals important alleles associated with seed size in rice. BMC Plant Biol. 16, 1 (2016).

    Article  Google Scholar 

  32. Takano-Kai, N. et al. Evolutionary history of GS3, a gene conferring grain length in rice. Genetics 182, 1323–1334 (2009).

    CAS  Article  Google Scholar 

  33. Rodenburg, J. et al. Weed competitiveness of the lowland rice varieties of NERICA in the southern Guinea savanna. Field Crop Res. 114, 411–418 (2009).

    Article  Google Scholar 

  34. Agnoun, Y. et al. The African rice Oryza glaberrima steud: knowledge distribution and prospects. Int. J. Biol. 4, 158–180 (2012).

    Google Scholar 

  35. Balasubramanian, V., Sie, M., Hijmans, R. J. & Otsuka, K. Increasing rice production in Sub-Saharan Africa: challenges and opportunities. Adv. Agron. 94, 79–80 (2007).

    Google Scholar 

  36. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler Transform. Bioinformatics 25, 1754–1760 (2009).

    CAS  Article  Google Scholar 

  37. McKenna, A. et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    CAS  Article  Google Scholar 

  38. Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, 2074–2093 (2006).

    CAS  Article  Google Scholar 

  39. Browning, S. R. & Browning, B. L. Rapid and accurate haplotype phasing and missing data inference for whole genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81, 1084–1097 (2007).

    CAS  Article  Google Scholar 

  40. Browning, B. L. & Browning, S. R. Genotype imputation with millions of reference samples. Am. J. Hum. Genet. 98, 116–126 (2016).

    CAS  Article  Google Scholar 

  41. Gautier, M., Klassmann, A. & Vitali, R. REHH 2.0: a reimplementation of the R package REHH to detect positive selection from haplotype structure. Mol. Ecol. Resour. 17, 78–90 (2017).

    CAS  Article  Google Scholar 

  42. Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    CAS  Article  Google Scholar 

Download references


We thank the International Rice Research Institute and the United States Department of Agriculture Research Service for providing the wild rice and cultivated rice samples. This research was supported by the National Key R&D Program for Crop Breeding (2016YFD0100901), the Ministry of Agriculture of China (2016ZX08009-003) and the National Natural Science Foundation of China (Grant 31471457). We acknowledge the NSF Plant Genome Program for support to Meyer (1202803). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations



Z.Z. and R.A.W. designed and supervised this study. W.W. conducted characterization of introgression line, map-based cloning, genetic transformation, gene expression analysis. W.W. and X. Liu constructed the introgression lines. M.W., R.S.M. and J.Z. performed evolutionary analysis of GL4. X. Luo bred the NIL-GL4Og. M.-N.N., L.T., J.W., H.C., C.S. and X.W. conducted the collection of rice germplasm and phenotypic data. Z.Z., R.S.M. and R.A.W. wrote the manuscript.

Corresponding authors

Correspondence to Rod A. Wing or Zuofeng Zhu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–14, Supplementary Table 1–4. (PDF 1564 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Liu, X., Wang, M. et al. A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication. Nature Plants 3, 17064 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing