Root hydrotropism is controlled via a cortex-specific growth mechanism


Plants can acclimate by using tropisms to link the direction of growth to environmental conditions. Hydrotropism allows roots to forage for water, a process known to depend on abscisic acid (ABA) but whose molecular and cellular basis remains unclear. Here we show that hydrotropism still occurs in roots after laser ablation removed the meristem and root cap. Additionally, targeted expression studies reveal that hydrotropism depends on the ABA signalling kinase SnRK2.2 and the hydrotropism-specific MIZ1, both acting specifically in elongation zone cortical cells. Conversely, hydrotropism, but not gravitropism, is inhibited by preventing differential cell-length increases in the cortex, but not in other cell types. We conclude that root tropic responses to gravity and water are driven by distinct tissue-based mechanisms. In addition, unlike its role in root gravitropism, the elongation zone performs a dual function during a hydrotropic response, both sensing a water potential gradient and subsequently undergoing differential growth.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Laser ablation of columella cells affects the gravitropic but not the hydrotropic response of roots.
Figure 2: ABA signalling in the cortex is crucial for root hydrotropism.
Figure 3: Root growth and cortical endoreplication are induced by low levels of ABA.
Figure 4: Inhibition of differential cell elongation in the cortex prevents hydrotropism but not gravitropism.
Figure 5: Conceptual model for root hydrotropism.


  1. 1

    Blancaflor, E. B., Fasano, J. M. & Gilroy, S. Mapping the functional roles of cap cells in the response of Arabidopsis primary roots to gravity. Plant Physiol. 116, 213–222 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Ottenschlager, I. et al. Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proc. Natl Acad. Sci. USA 100, 2987–2991 (2003).

    CAS  PubMed  Google Scholar 

  3. 3

    Swarup, R. et al. Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal. Nat. Cell Biol. 7, 1057–1065 (2005).

    CAS  PubMed  Google Scholar 

  4. 4

    Rahman, A. et al. Gravitropism of Arabidopsis thaliana roots requires the polarization of PIN2 toward the root tip in meristematic cortical cells. Plant Cell 22, 1762–1776 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Friml, J. Subcellular trafficking of PIN auxin efflux carriers in auxin transport. Eur. J. Cell Biol. 89, 231–235 (2010).

    CAS  PubMed  Google Scholar 

  6. 6

    Jaffe, M. J., Takahashi, H. & Biro, R. L. A pea mutant for the study of hydrotropism in roots. Science 230, 445–447 (1985).

    CAS  PubMed  Google Scholar 

  7. 7

    Takahashi, H. & Suge, H. Root hydrotropism of an agravitropic pea mutant, ageotropum. Physiol. Plant. 82, 24–31 (1991).

    Google Scholar 

  8. 8

    Takahashi, H. & Scott, T. K. Intensity of hydrostimulation for the induction of root hydrotropism and its sensing by the root cap. Plant Cell Environ. 16, 99–103 (1993).

    CAS  PubMed  Google Scholar 

  9. 9

    Miyazawa, Y. et al. Effects of locally targeted heavy-ion and laser microbeam on root hydrotropism in Arabidopsis thaliana. J. Radiat. Res. 49, 373–379 (2008).

    PubMed  Google Scholar 

  10. 10

    Miyamoto, N., Ookawa, T., Takahashi, H. & Hirasawa, T. Water uptake and hydraulic properties of elongating cells in hydrotropically bending roots of Pisum sativum L. Plant Cell Physiol. 43, 393–401 (2002).

    CAS  PubMed  Google Scholar 

  11. 11

    Kaneyasu, T. et al. Auxin response, but not its polar transport, plays a role in hydrotropism of Arabidopsis roots. J. Exp. Bot. 58, 1143–1150 (2007).

    CAS  PubMed  Google Scholar 

  12. 12

    Takahashi, N., Goto, N., Okada, K. & Takahashi, H. Hydrotropism in abscisic acid, wavy, and gravitropic mutants of Arabidopsis thaliana. Planta 216, 203–211 (2002).

    CAS  PubMed  Google Scholar 

  13. 13

    Takahashi, H., Miyazawa, Y. & Fujii, N. Hormonal interactions during root tropic growth: hydrotropism versus gravitropism. Plant Mol. Biol. 69, 489–502 (2009).

    CAS  PubMed  Google Scholar 

  14. 14

    Shkolnik, D., Krieger, G., Nuriel, R. & Fromm, H. Hydrotropism: root bending does not require auxin redistribution. Mol. Plant 9, 757–759 (2016).

    CAS  PubMed  Google Scholar 

  15. 15

    Shkolnik, D. & Fromm, H. The Cholodny-Went theory does not explain hydrotropism. Plant Sci. 252, 400–403 (2016).

    CAS  PubMed  Google Scholar 

  16. 16

    Antoni, R. et al. PYRABACTIN RESISTANCE1-LIKE8 plays an important role for the regulation of abscisic acid signaling in root. Plant Physiol. 161, 931–941 (2013).

    CAS  PubMed  Google Scholar 

  17. 17

    Kobayashi, A. et al. A gene essential for hydrotropism in roots. Proc. Natl Acad. Sci. USA 104, 4724–4729 (2007).

    CAS  PubMed  Google Scholar 

  18. 18

    Moriwaki, T., Miyazawa, Y., Fujii, N. & Takahashi, H. Light and abscisic acid signalling are integrated by MIZ1 gene expression and regulate hydrotropic response in roots of Arabidopsis thaliana. Plant Cell Environ. 35, 1359–1368 (2012).

    CAS  PubMed  Google Scholar 

  19. 19

    Moriwaki, T., Miyazawa, Y., Kobayashi, A. & Takahashi, H. Molecular mechanisms of hydrotropism in seedling roots of Arabidopsis thaliana (Brassicaceae). Am. J. Bot. 100, 25–34 (2013).

    CAS  PubMed  Google Scholar 

  20. 20

    Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R. & Abrams, S. R. Abscisic acid: Emergence of a core signaling network. Annu. Rev. Plant Biol. 61, 651–679 (2010).

    CAS  PubMed  Google Scholar 

  21. 21

    Ma, Y. et al. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324, 1064–1068 (2009).

    CAS  PubMed  Google Scholar 

  22. 22

    Park, S. Y. et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324, 1068–1071 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Fujii, H. et al. In vitro reconstitution of an abscisic acid signalling pathway. Nature 462, 660–664 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Fujii, H., Verslues, P. E. & Zhu, J. K. Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell 19, 485–494 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Antoni, R., Dietrich, D., Bennett, M. J. & Rodriguez, P. L. Hydrotropism: analysis of the root response to a moisture gradient. Methods Mol. Biol. 1398, 3–9 (2016).

    CAS  PubMed  Google Scholar 

  26. 26

    Kline, K. G., Barrett-Wilt, G. A. & Sussman, M. R. In planta changes in protein phosphorylation induced by the plant hormone abscisic acid. Proc. Natl Acad. Sci. USA 107, 15986–15991 (2010).

    CAS  PubMed  Google Scholar 

  27. 27

    Wang, P. et al. Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action. Proc. Natl Acad. Sci. USA 110, 11205–11210 (2013).

    CAS  PubMed  Google Scholar 

  28. 28

    Casamitjana-Martinez, E. et al. Root-specific CLE19 overexpression and the sol1/2 suppressors implicate a CLV-like pathway in the control of Arabidopsis root meristem maintenance. Curr. Biol. 13, 1435–1441 (2003).

    CAS  PubMed  Google Scholar 

  29. 29

    Willemsen, V. et al. The NAC domain transcription factors FEZ and SOMBRERO control the orientation of cell division plane in Arabidopsis root stem cells. Dev. Cell 15, 913–922 (2008).

    CAS  PubMed  Google Scholar 

  30. 30

    Lee, M. M. & Schiefelbein, J. WEREWOLF, a MYB-related protein in Arabidopsis, is a position-dependent regulator of epidermal cell patterning. Cell 99, 473–483 (1999).

    CAS  PubMed  Google Scholar 

  31. 31

    Wysocka-Diller, J. W., Helariutta, Y., Fukaki, H., Malamy, J. E. & Benfey, P. N. Molecular analysis of SCARECROW function reveals a radial patterning mechanism common to root and shoot. Development 127, 595–603 (2000).

    CAS  PubMed  Google Scholar 

  32. 32

    Heidstra, R., Welch, D. & Scheres, B. Mosaic analyses using marked activation and deletion clones dissect Arabidopsis SCARECROW action in asymmetric cell division. Genes & Dev. 18, 1964–1969 (2004).

    CAS  Google Scholar 

  33. 33

    Lee, J. Y. et al. Transcriptional and posttranscriptional regulation of transcription factor expression in Arabidopsis roots. Proc. Natl Acad. Sci. USA 103, 6055–6060 (2006).

    CAS  PubMed  Google Scholar 

  34. 34

    Ondzighi-Assoume, C. A., Chakraborty, S. & Harris, J. M. Environmental nitrate stimulates abscisic acid accumulation in Arabidopsis root tips by releasing it from inactive stores. Plant Cell 28, 729–745 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Sharp, R. E., Wu, Y. J., Voetberg, G. S., Saab, I. N. & Lenoble, M. E. Confirmation that abscisic-acid accumulation is required for maize primary root elongation at low water potentials. J. Exp. Bot. 45, 1743–1751 (1994).

    CAS  Google Scholar 

  36. 36

    Xu, W. F. et al. Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress. New Phytol. 197, 139–150 (2013).

    CAS  PubMed  Google Scholar 

  37. 37

    Rowe, J. H., Topping, J. F., Liu, J. & Lindsey, K. Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin. New Phytol. 211, 225–239 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Dyson, R. J. et al. Mechanical modelling quantifies the functional importance of outer tissue layers during root elongation and bending. New Phytol. 202, 1212–1222 (2014).

    PubMed  PubMed Central  Google Scholar 

  39. 39

    Churchman, M. L. et al. SIAMESE, a plant-specific cell cycle regulator, controls endoreplication onset in Arabidopsis thaliana. Plant Cell 18, 3145–3157 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Brunoud, G. et al. A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature 482, 103–106 (2012).

    CAS  PubMed  Google Scholar 

  41. 41

    Band, L. R. et al. Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping-point mechanism. Proc. Natl Acad. Sci. USA 109, 4668–4673 (2012).

    CAS  PubMed  Google Scholar 

  42. 42

    Mullen, J. L., Ishikawa, H. & Evans, M. L. Analysis of changes in relative elemental growth rate patterns in the elongation zone of Arabidopsis roots upon gravistimulation. Planta 206, 598–603 (1998).

    CAS  PubMed  Google Scholar 

  43. 43

    Krieger, G., Shkolnik, D., Miller, G. & Fromm, H. Reactive oxygen species tune root tropic responses. Plant Physiol. 172, 1209–1220 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Wells, D. M. et al. Recovering the dynamics of root growth and development using novel image acquisition and analysis methods. Philos. T. R. Soc. B 367, 1517–1524 (2012).

    Google Scholar 

  45. 45

    French, A. P. et al. Identifying biological landmarks using a novel cell measuring image analysis tool: Cell-o-Tape. Plant Methods 8, 7 (2012).

    PubMed  PubMed Central  Google Scholar 

  46. 46

    Baskin, T. I. Patterns of root growth acclimation: constant processes, changing boundaries. WIREs Dev. Biol. 2, 65–73 (2013).

    CAS  Google Scholar 

Download references


The authors thank C. Howells, K. Swarup and M. Whitworth for technical assistance, J.-K. Zhu for providing snrk2.2 snrk2.3 seeds, W. Grunewald for pDONR-L1-GAL4-VP16-R2 and S. Tsukinoki for generating WER:MIZ1-GFP(HSPter) and PIN2:MIZ1-GFP(HSPter) transgenic plants and acknowledge the following funding agencies for financial support: D.D., J.F., R.A., T.N., D.W., S.T., C.S., S.M., M.R.O., L.R.B., R.D., O.J., J.K., J.R., T.B. and M.J.B. thank the Biological and Biotechnology Science Research Council (BBSRC) for responsive mode and CISB awards to the Centre for Plant Integrative Biology; D.W., C.S., S.M., M.R.O., J.K., T.P. and M.J.B. thank the European Research Council (ERC) for FUTUREROOTS project funding; L.R.B. thanks the Leverhulme Trust for an Early Career Fellowship; V.B., R.B. and L.D.V. are supported by grants of the Research Foundation Flanders (G.002911N). R.B. and M.J.B. thank the Royal Society for Newton and Wolfson Research Fellowship awards; R.A., T.I.B. and M.J.B. thank the FP7 Marie Curie Fellowship Scheme; R.D. thanks the Engineering and Physical Sciences Research Council, J.D. and M.J.B. thank the GII scheme; and V.B., R.B., L.D.V. and M.J.B. thank the Interuniversity Attraction Poles Programme (IUAP P7/29 “MARS”), initiated by the Belgian Science Policy Office. R.B.P. was funded by grants from the Knut and Alice Wallenberg Foundation. This work was also supported by a Grant-in-Aid for Scientific Research on Innovative Areas (No. 22120004) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan to H.T., a Grant-in-Aid for Young Scientists (B) (No. 26870057) from the Japan Society for the Promotion of Science (JSPS) to A.K., a Grant-in-Aid for Scientific Research on Innovative Areas (No. 22120002) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan to A.N., a Grant-in-Aid for Scientific Research on Innovative Areas (No. 22120010) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan to Y.H. and the Funding Program for Next-Generation World-Leading Researchers (GS002) to Y.M. L.P. was financially supported by a scholarship from the Japanese government. T.-W.B. was financially supported by the Funding Program for Next-Generation World-Leading Researchers (GS002) and the Grant-in-Aid for Scientific Research on Innovative Areas (No. 22120004).

Author information




D.D., L.P., A.K., J.F., V.B., R.B., R.A., T.N., S.H., T.-W.B., Y.M., D.M.W., S.T. and C.J.S. performed experimental work and data analysis and mathematical modelling. D.M.W., M.R.O., L.R.B., R.D., O.J., J.R.K., S.J.M., J.R., R.B., J.D., P.L.R., T.I.B., T.P., L.D.V., N.F., Y.M., A.N., Y.H., H.T. and M.J.B. oversaw project planning and discussed experimental results and modelling simulations. D.D., L.P., A.K., N.F., Y.M., T.I.B., H.T. and M.J.B. wrote the paper.

Corresponding authors

Correspondence to Hideyuki Takahashi or Malcolm J. Bennett.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–8, Supplementary Methods, Supplementary References, Supplementary Table 1, Supplementary Notes 1 and 2. (PDF 6852 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dietrich, D., Pang, L., Kobayashi, A. et al. Root hydrotropism is controlled via a cortex-specific growth mechanism. Nature Plants 3, 17057 (2017).

Download citation

Further reading


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing