Abstract
Desiccation tolerance is common in seeds and various other organisms, but only a few angiosperm species possess vegetative desiccation tolerance. These ‘resurrection species’ may serve as ideal models for the ultimate design of crops with enhanced drought tolerance. To understand the molecular and genetic mechanisms enabling vegetative desiccation tolerance, we produced a high-quality whole-genome sequence for the resurrection plant Xerophyta viscosa and assessed transcriptome changes during its dehydration. Data revealed induction of transcripts typically associated with desiccation tolerance in seeds and involvement of orthologues of ABI3 and ABI5, both key regulators of seed maturation. Dehydration resulted in both increased, but predominantly reduced, transcript abundance of genomic ‘clusters of desiccation-associated genes’ (CoDAGs), reflecting the cessation of growth that allows for the expression of desiccation tolerance. Vegetative desiccation tolerance in X. viscosa was found to be uncoupled from drought-induced senescence. We provide strong support for the hypothesis that vegetative desiccation tolerance arose by redirection of genetic information from desiccation-tolerant seeds.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Tripogon loliiformis tolerates rapid desiccation after metabolic and transcriptional priming during initial drying
Scientific Reports Open Access 23 November 2023
-
Chromosome evolution and the genetic basis of agronomically important traits in greater yam
Nature Communications Open Access 14 April 2022
-
Systems biology of resurrection plants
Cellular and Molecular Life Sciences Open Access 14 August 2021
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Kermode, A. R. Approaches to elucidate the basis of desiccation-tolerance in seeds. Seed Sci. Res. 7, 75–95 (1997).
Black, M. & Pritchard, H. W. (eds) in Desiccation and Survival in Plants 207–237 (CABI, 2002); http://www.cabi.org/cabebooks/ebook/20023069464
Gaff, D. F. Desiccation-tolerant flowering plants in Southern Africa. Science 174, 1033–1034 (1971).
Porembski, S. in Plant Desiccation Tolerance Vol. 215 (eds Lüttge, U., Beck, E. & Bartels, D. ) 139–156 (Springer, 2011).
Jönsson, K. I. & Järemo, J. A model on the evolution of cryptobiosis. Ann. Zool. Fennici. 40, 331–34040 (2003).
Alpert, P. Constraints of tolerance: why are desiccation-tolerant organisms so small or rare? J. Exp. Biol. 209, 1575–1584 (2006).
Oliver, M. J., Tuba, Z. & Mishler, B. D. The evolution of vegetative desiccation tolerance in land plants. Plant Ecol. 151, 85–100 (2000).
Oliver, M. J., Velten, J. & Mishler, B. D. Desiccation tolerance in bryophytes: a reflection of the primitive strategy for plant survival in dehydrating habitats? Integr. Comp. Biol. 45, 788–799 (2005).
Farrant, J. M. et al. A molecular physiological review of vegetative desiccation tolerance in the resurrection plant Xerophyta viscosa (Baker). Planta 242, 407–426 (2015).
Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 3, 52–58 (2013).
Chin, C.-S. et al. Phased diploid genome assembly with single molecule real-time sequencing. Nat. Methods 13, 1050–1054 (2016).
Song, L., Florea, L. & Langmead, B. Lighter: fast and memory-efficient sequencing error correction without counting. Genome Biol. 15, 509 (2014).
Ye, C. et al. Exploiting sparseness in de novo genome assembly. BMC Bioinformatics 13, S1 (2012).
Ye, C., Hill, C., Wu, S., Ruan, J. & Ma, Z. DBG2OLC: efficient assembly of large genomes using long erroneous reads of the third generation sequencing technologies. Sci. Rep. 6, 31900 (2016).
Boetzer, M. et al. SSPACE-LongRead: scaffolding bacterial draft genomes using long read sequence information. BMC Bioinformatics 15, 211 (2014).
Yoshida, K. et al. The rise and fall of the Phytophthora infestans lineage that triggered the Irish potato famine. eLife 2, e00731 (2013).
de Melo, N. F. et al. Cytogenetics and cytotaxonomy of velloziaceae. Plant Syst. Evol. 204, 257–273 (1997).
VanBuren, R. et al. Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum. Nature 527, 508–511 (2015).
Xiao, L. et al. The resurrection genome of Boea hygrometrica: a blueprint for survival of dehydration. Proc. Natl Acad. Sci. USA 112, 5833–5837 (2015).
Yasui, Y. et al. Draft genome sequence of an inbred line of Chenopodium quinoa, an allotetraploid crop with great environmental adaptability and outstanding nutritional properties. DNA Res. 23, 535–546 (2016).
Šmarda, P. et al. Ecological and evolutionary significance of genomic GC content diversity in monocots. Proc. Natl Acad. Sci. USA 111, E4096–E4102 (2014).
Boeckmann, B. et al. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 31, 365–370 (2003).
Mitchell, A. et al. The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res. 43, D213–D221 (2015).
Wilson, G. A. et al. Orphans as taxonomically restricted and ecologically important genes. Microbiology 151, 2499–2501 (2005).
Hilbricht, T. et al. Retrotransposons and siRNA have a role in the evolution of desiccation tolerance leading to resurrection of the plant Craterostigma plantagineum. New Phytol. 179, 877–887 (2008).
Cannarozzi, G. et al. Genome and transcriptome sequencing identifies breeding targets in the orphan crop tef (Eragrostis tef). BMC Genomics 15, 581 (2014).
Gaff, D. F. & Oliver, M. J. The evolution of desiccation tolerance in angiosperm plants: a rare yet common phenomenon. Funct. Plant Biol. 40, 315–328 (2013).
Mundree, S. G. & Farrant, J. M. in Plant Tolerance to Abiotic Stress in Agriculture: Role of Genetic Engineering (eds Cherry, J. H., Locy, R. D. & Rychter, A. ) 201–222 (Springer, 2000).
Gaff, D. F. & Loveys, B. Abscisic acid levels in drying plants of a resurrection grass. Trans. Malaysian Soc. Plant Physiol. 3, 286–287 (1993).
Farrant, J. M., Cooper, K., Dace, H. J. W., Bentely, J. & Hilgart, A. in Plant Stress Physiology (ed Shabala, S. ) 217–252 (CAB International, 2016).
Bewley, J. D. Physiological aspects of desiccation tolerance. Annu. Rev. Plant Physiol. 30, 195–238 (1979).
Csintalan, Z., Tuba, Z., Lichtenthaler, H. K. & Grace, J. Reconstitution of photosynthesis upon rehydration in the desiccated leaves of the poikilochlorophyllous shrub Xerophyta scabrida at elevated CO2 . J. Plant Physiol. 148, 345–350 (1996).
Tuba, Z., Protor, M. C. F. & Csintalan, Z. Ecophysiological responses of homoiochlorophyllous and poikilochlorophyllous desiccation tolerant plants: a comparison and an ecological perspective. Plant Growth Regul. 24, 211–217 (1998).
Gechev, T. S. et al. Molecular mechanisms of desiccation tolerance in the resurrection glacial relic Haberlea rhodopensis. Cell. Mol. Life Sci. 70, 689–709 (2013).
Dinakar, C. & Bartels, D. Desiccation tolerance in resurrection plants: new insights from transcriptome, proteome and metabolome analysis. Front. Plant Sci. 4, 482 (2013).
Rodriguez, M. C. S. et al. Transcriptomes of the desiccation-tolerant resurrection plant Craterostigma plantagineum. Plant J. 63, 212–228 (2010).
Costa, M.-C. D. et al. Key genes involved in desiccation tolerance and dormancy across life forms. Plant Sci. 251, 162–168 (2016).
Williams, B. et al. Trehalose accumulation triggers autophagy during plant desiccation. PLoS Genet. 11, 1–17 (2015).
Challabathula, D., Puthur, J. T. & Bartels, D. Surviving metabolic arrest: photosynthesis during desiccation and rehydration in resurrection plants. Ann. NY Acad. Sci. 1365, 89–99 (2015).
Todaka, D., Shinozaki, K. & Yamaguchi-Shinozaki, K. Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Front. Plant Sci. 6, 84 (2015).
Tunnacliffe, A. & Wise, M. J. The continuing conundrum of the LEA proteins. Naturwissenschaften 94, 791–812 (2007).
Wang, Y. et al. MCScanx: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49 (2012).
Tuba, Z., Lichtenthaler, H. K., Maroti, I. & Csintalan, Z. Resynthesis of thylakoids and functional chloroplasts in the desiccated leaves of the poikilochlorophyllous plant Xerophyta scabrida upon rehydration. J. Plant Physiol. 142, 742–748 (1993).
Bajic, J. Exploring the longevity of dry Craterostigma wilmsii (homoiochlorophyllous) and Xerophyta humilis (poikolichlorophyllous) under simulated field conditions. PhD thesis, Univ. Cape Town (2006).
Verdier, J. et al. A regulatory network-based approach dissects late maturation processes related to the acquisition of desiccation tolerance and longevity of Medicago truncatula seeds. Plant Physiol. 163, 757–774 (2013).
Zinsmeister, J. et al. ABI5 is a regulator of seed maturation and longevity in legumes. Plant Cell 28, 2735–2754 (2016).
Mönke, G. et al. Toward the identification and regulation of the Arabidopsis thaliana ABI3 regulon. Nucleic Acids Res. 40, 8240–8254 (2012).
Delahaie, J. et al. LEA polypeptide profiling of recalcitrant and orthodox legume seeds reveals ABI3-regulated LEA protein abundance linked to desiccation tolerance. J. Exp. Bot. 64, 4559–4573 (2013).
Khandelwal, A. et al. Role of ABA and ABI3 in desiccation tolerance. Science 327, 546 (2010).
Griffiths, C. A. et al. Drying without senescence in resurrection plants. Front. Plant Sci. 5 (2014).
Li, Z., Peng, J., Wen, X. & Guo, H. Gene network analysis and functional studies of senescence-associated genes reveal novel regulators of Arabidopsis leaf senescence. J. Integr. Plant Biol. 54, 526–539 (2012).
Reis, P. A. A. et al. The binding protein BiP attenuates stress-induced cell death in soybean via modulation of the N-rich protein-mediated signaling pathway. Plant Physiol. 157, 1853–1865 (2011).
Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963 (2014).
English, A. C. et al. Mind the gap: upgrading genomes with pacific biosciences RS long-read sequencing technology. PLoS ONE 7, e47768 (2012).
Kurtz, S. et al. Versatile and open software for comparing large genomes. Genome Biol. 5, R12 (2004).
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013).
Stanke, M. & Morgenstern, B. AUGUSTUS: A web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res. 33, 465–467 (2005).
Korf, I. Gene finding in novel genomes. BMC Bioinformatics 5, 59 (2004).
Hoff, K. J., Lange, S., Lomsadze, A., Borodovsky, M. & Stanke, M. BRAKER1: unsupervised RNA-Seq-based genome annotation with GeneMark-ET and AUGUSTUS. Bioinformatics 32, 767–769 (2016).
Harris, M. A. et al. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res. 32, D258–D2261 (2004).
Conesa, A. et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676 (2005).
Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker Open-3.0 (RepeatMasker, 2008); http://www.repeatmasker.org
Lowe, T. M. & Eddy, S. R. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997).
Nawrocki, E. P. & Eddy, S. R. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29, 2933–2935 (2013).
Nawrocki, E. P. et al. Rfam 12.0: updates to the RNA families database. Nucleic Acids Res. 43, D130–D137 (2015).
Garrison, E. & Marth, G. Haplotype-based variant detection from short-read sequencing. Preprint at https://arxiv.org/abs/1207.3907# (2012).
Emms, D. M. & Kelly, S. Orthofinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 16, 157 (2015).
Csuos, M. Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood. Bioinformatics 26, 1910–1912 (2010).
Szinay, D. et al. High-resolution chromosome mapping of BACs using multi-colour FISH and pooled-BAC FISH as a backbone for sequencing tomato chromosome 6. Plant J. 56, 627–637 (2008).
Wan, C.-Y. & Wilkins, T. A. A modified hot borate method significantly enhances the yield of high quality RNA from cotton (Gossypium hirsutum L.). Anal. Biochem. 223, 7–12 (1994).
Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).
Oliver, M. J. et al. A sister group contrast using untargeted global metabolomic analysis delineates the biochemical regulation underlying desiccation tolerance in Sporobolus stapfianus. Plant Cell 23, 1231–1248 (2011).
Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).
Finn, R. D. et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44, D279–D285 (2015).
Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 39, W29–W37 (2011).
Freeman, T. C. et al. Construction, visualisation, and clustering of transcription networks from microarray expression data. PLoS Comput. Biol. 3, 2032–2042 (2007).
Acknowledgements
We thank E. Parker (owner) and J. Burrows (manager) of Buffelskloof Nature Reserve Mphumulanga for allowing collection of Xerophyta viscosa plants. We thank all members of the Wageningen Seed Lab for discussions. We thank K. Cooper for invaluable assistance in compiling Fig. 1. M.-C.D.C. received financial support from CNPq–National Council for Scientific and Technological Development (201007/2011-8). M.A.S.A. received financial support from CAPES–Brazilian Federal Agency for Support and Evaluation of Graduate Education (BEX0428/09-04, BEX0857/14-9). J.M.F. acknowledges use of funding supplied by the South African Research Chairs Initiative of the DST and NRF of SA (Grant No 98406).
Author information
Authors and Affiliations
Contributions
M.-C.D.C. and M.A.S.A. wrote the article; M.-C.D.C., H.N., E.J. and M.F.L.D. performed the bioinformatics; J.M. and W.L. contributed to the genome and transcriptome analysis; J.M.J.-G. and M.J.O. performed and analysed the transcriptomics; B.W. and S.G.M. provided the autophagy/anti-senescence dataset and performed blasting; T.H. and E.G.W.M.S. prepared the libraries and performed the PacBio sequencing and initial genome analysis; J.M.F. and H.W.M.H. initiated and coordinated the work and directed preparation of the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Figures 1–6, Supplementary Tables 1–6, Supplementary References. (PDF 5201 kb)
Supplementary Data Table
List of 4,914 probe sets used to build the network and network analysis results. Network analysis was done using Cytoscape's built-in tool NetworkAnalyzer. (XLS 1827 kb)
Rights and permissions
About this article
Cite this article
Costa, MC., Artur, M., Maia, J. et al. A footprint of desiccation tolerance in the genome of Xerophyta viscosa. Nature Plants 3, 17038 (2017). https://doi.org/10.1038/nplants.2017.38
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/nplants.2017.38
This article is cited by
-
Tripogon loliiformis tolerates rapid desiccation after metabolic and transcriptional priming during initial drying
Scientific Reports (2023)
-
The protective effect of drying on the cryopreservation of Neoporphyra haitanensis
Journal of Applied Phycology (2023)
-
Chromosome evolution and the genetic basis of agronomically important traits in greater yam
Nature Communications (2022)
-
Stachyose triggers apoptotic like cell death in drought sensitive but not resilient plants
Scientific Reports (2021)
-
Terrestrial Green Algae Show Higher Tolerance to Dehydration than Do Their Aquatic Sister-Species
Microbial Ecology (2021)