Palaeobotanical redux: revisiting the age of the angiosperms


Angiosperms (flowering plants) are the most diverse of all major lineages of land plants and the dominant autotrophs in most terrestrial ecosystems. Their evolutionary and ecological appearance is therefore of considerable interest and has significant implications for understanding patterns of diversification in other lineages, including insects and other animals. More than half a century ago, influential reviews showed that while angiosperms are richly represented in sediments of Late Cretaceous and younger ages, there are no reliable records of angiosperms from pre-Cretaceous rocks. The extensive new macrofossil, mesofossil, and microfossil data that have accumulated since have confirmed and reinforced this pattern. Recently, however, molecular dating methods have raised the possibility that angiosperms may have existed much earlier, and there have been scattered reports of putative angiosperms from Triassic and Jurassic rocks. Critical assessment of these reports shows that, so far, none provide unequivocal evidence of pre-Cretaceous angiosperms. Angiosperms may ultimately be recognized from Jurassic or earlier rocks, but credible palaeobotanical evidence will require unambiguous documentation of the diagnostic structural features that separate angiosperms from other groups of extant and extinct seed plants.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Fossil ranges of major angiosperm lineages, focused on the Cretaceous diversification.
Figure 2: Illustrations of angiosperm reproductive structures to show derived diagnostic features that characterize flowering plants.
Figure 3: Euanthus panii and seed cone of modern Tsuga diversifolia for comparison.
Figure 4: Solaranthus daohugensis (Aegianthus daohugensis) from the type locality, deposited in the collections of the Institute of Vertebrate Palaeontology and Palaeoanthropology, Beijing, China (specimen number B0252).


  1. 1

    Scott, R. A., Barghoorn, E. S. & Leopold, E. How old are the angiosperms? Am. J. Sci. 258, 284–299 (1960).

    Google Scholar 

  2. 2

    Hughes, N. F. Fossil evidence and angiosperm ancestry. Sci. Prog. 49, 84–102 (1961).

    Google Scholar 

  3. 3

    Muller, J. Palynological evidence on early differentiation of angiosperms. Biol. Rev. 45, 417–450 (1970).

    Article  Google Scholar 

  4. 4

    Doyle, J. A. & Hickey, L. J. in Origin and Early Evolution of Angiosperms (ed. Beck, C. B. ) 139–206 (Columbia University Press, 1976).

    Google Scholar 

  5. 5

    Hughes, N. F. The Enigma of Angiosperm Origins (Cambridge University Press, 1994).

    Google Scholar 

  6. 6

    Soltis, D. E. et al. Angiosperm phylogeny: 17 genes, 640 taxa. Am. J. Bot. 98, 704–730 (2011).

    Article  PubMed  Google Scholar 

  7. 7

    Qiu, Y.-L. et al. The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature 402, 404–407 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. 8

    The Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181, 1–20 (2016).

  9. 9

    Hughes, N. F. Palaeobiology of Angiosperm Origins (Cambridge University Press, 1976).

    Google Scholar 

  10. 10

    Friis, E. M., Crane, P. R. & Pedersen, K. R. Early Flowers and Angiosperm Evolution (Cambridge University Press, 2011).

    Google Scholar 

  11. 11

    Mohr, B. A. R., Bernardes-de-Oliveira, M. E. C. & Loveridge, R. F. in The Crato Fossil Beds of Brazil: Window into an Ancient World (eds Maill, D. M., Bechly, G. & Loveridge, R. F. ) 537–565 (Cambridge University Press, 2007).

    Google Scholar 

  12. 12

    Sun, G. et al. Archaefructaceae, a new basal angiosperm family. Science 296, 899–904 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. 13

    Leng, Q. & Friis, E. M. Sinocarpus decussatus gen. et sp. nov., a new angiosperm with syncarpous fruits from the Yixian Formation of Northeast China. Pl. Syst. Evol. 241, 77–88 (2003).

    Article  Google Scholar 

  14. 14

    Friis, E. M., Pedersen, K. R. & Crane, P. R. Kenilanthus, a new eudicot flower with tricolpate pollen from the Early Cretaceous (early-middle Albian) of eastern North America. Grana 56, 161–173, (2016).

    Article  Google Scholar 

  15. 15

    Friis, E. M., Crane, P. R., Pedersen, K. R., Stampanoni, M. & Marone, F. Exceptional preservation of tiny embryos documents seed dormancy in early angiosperms. Nature 528, 551–554 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. 16

    Wikström, N., Savolainen, V. & Chase, M. W. Evolution of the angiosperms. Calibrating the tree. Proc. R. Soc. Lond. B 268, 2211–2220 (2001).

    Article  Google Scholar 

  17. 17

    Anderson, C. L., Bremer, K. & Friis, E. M. Dating phylogenetically basal eudicots using rbcL sequences and multiple fossil reference points. Am. J. Bot. 92, 1737–1748 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. 18

    Magallón, S. & Castillo, A. Angiosperm diversification through time. Am. J. Bot. 96, 349–365 (2009).

    Article  PubMed  Google Scholar 

  19. 19

    Bell, C. D., Soltis, D. E. & Soltis, P. S. The age and diversification of the angiosperms re-revisited. Am. J. Bot. 97, 1296–1303 (2010).

    Article  PubMed  Google Scholar 

  20. 20

    Beaulieu, J. M., O’Meara, B. C., Crane, P. R. & Donoghue, M. J. Heterogeneous rates of molecular evolution and diversification could explain the Triassic age estimate for angiosperms. Syst. Biol. 64, 869–878 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. 21

    Smith, S. A., Beaulieu, J. M. & Donoghue, M. J. An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants. Proc. Natl Acad. Sci. USA 107, 5897–5902, (2010).

    Article  PubMed  Google Scholar 

  22. 22

    Doyle, J. A. Molecular and fossil evidence on the origin of angiosperms. Ann. Rev. Earth Planet. Sci. 40, 301–326 (2012).

    Article  CAS  Google Scholar 

  23. 23

    Doyle, J. A. Recognising angiosperm clades in the Early Cretaceous fossil record. Hist. Biol. 27, 414–429 (2015).

    Article  Google Scholar 

  24. 24

    Zeng, L. et al. Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times. Nat. Commun. 5, 4956 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Doyle, J. A. & Donoghue, M. J. Phylogenies and angiosperm diversification. Paleobiology 19, 141–167 (1993).

    Article  Google Scholar 

  26. 26

    Crane, P. R., Friis, E. M. & Pedersen, K. R. The origin and early diversification of angiosperms. Nature 374, 27–33 (1995).

    Article  CAS  Google Scholar 

  27. 27

    Judd, W. S., Campbell, C. S., Kellogg, E. A., Stevens, P. F. & Donoghue, M. J. Plant Systematics: a Phylogenetic Approach 2nd edn (Sinauer Associates, 2002).

    Google Scholar 

  28. 28

    Rudall, P. J. & Bateman, R. M. Defining the limits of flowers: the challenge of distinguishing between the evolutionary products of simple versus compound strobili. Phil. Trans. R. Soc. B 365, 397–409 (2010).

    Article  PubMed  Google Scholar 

  29. 29

    Friis, E. M., Pedersen, K. R., von Balthazar, M., Grimm, G. W. & Crane, P. R. Monetianthus mirus gen. et sp. nov., a nymphaealean flower from the Early Cretaceous of Portugal. Int. J. Plant Sci. 170, 1086–1101 (2009).

    Article  Google Scholar 

  30. 30

    Friis, E. M., Grimm, G. W., Mendes, M. M. & Pedersen, K. R. Canrightiopsis, a new Early Cretaceous fossil with Clavatipollenites-type pollen bridge the gap between extinct Canrightia and extant Chloranthaceae. Grana 54, 184–212 (2015).

    Article  Google Scholar 

  31. 31

    Dilcher, D. L. & Crane, P. R. Archaeanthus: an early angiosperm from the Cenomanian of the Western Interior of North America. Ann. Missouri Bot. Gard. 71, 351–383 (1984).

    Article  Google Scholar 

  32. 32

    Drinnan, A. N., Crane, P. R., Friis, E. M. & Pedersen, K. R. Lauraceous flowers from the Potomac Group (mid-Cretaceous) of eastern North America. Bot. Gaz. 151, 370–384 (1990).

    Article  Google Scholar 

  33. 33

    Mendes, M. M., Grimm, G. W., Pais, J. & Friis, E. M. Fossil Kajanthus lusitanicus gen. et sp. nov. from Portugal: floral evidence for Early Cretaceous Lardizabalaceae (Ranunculales, basal eudicot). Grana 53, 283–301 (2014).

    Article  Google Scholar 

  34. 34

    Friis, E. M., Doyle, J. A., Endress, P. K. & Leng, Q. Archaefructus – angiosperm precursor or specialized early angiosperm? Trends Plant Sci. 8, 369–373 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. 35

    Doyle, J. A. & Endress, P. K. Integrating Early Cretaceous fossils into the phylogeny of living angiosperms: ANITA lines and relatives of Chloranthaceae. Int. J. Plant Sci. 175, 555–600 (2014).

    Article  Google Scholar 

  36. 36

    Hughes, N. F. & McDougall, A. B. Search for antecedents of Early Cretaceous monosulcate columellate pollen. Rev. Palaeobot. Palynol. 83, 175–183 (1994).

    Article  Google Scholar 

  37. 37

    Hughes, N. F. Plant succession in the English Wealden strata. Proc. Geol. Ass. 86, 439–455 (1975).

    Article  Google Scholar 

  38. 38

    Hughes, N. F., Drewry, G. & Laing, J. F. Barremian earliest angiosperm pollen. Palaeontology 22, 513–536 (1979).

    Google Scholar 

  39. 39

    Hughes, N. F. & McDougall, A. B. Records of angiospermid pollen entry into the English Early Cretaceous succession. Rev. Palaeobot. Palynol. 50, 255–272 (1987).

    Article  Google Scholar 

  40. 40

    Hughes, N. F., McDougall, A. B. & Chapman, J. L. Exceptional new record of Cretaceous Hauterivian angiospermid pollen from southern England. J. Micropalaeontol. 10, 75–82 (1991).

    Article  Google Scholar 

  41. 41

    Brenner, G. J. in Flowering Plant Origin, Evolution and Phylogeny (eds Taylor, D. W. & Hickey, L. J. ) 91–115 (Chapman& Hall, 1996).

    Google Scholar 

  42. 42

    Crane, P. R., Doyle, J. A., Donoghue, M. J. & Friis, E. M. Angiosperm origins. Nature 342, 131 (1989).

    Article  Google Scholar 

  43. 43

    Ibrahim, M. I. A., Zobaa, M. K., El–Noamani, Z. M. & Tahoun, S. S. A review of the angiosperm pollen genus Cretacaeiporites Herngreen, with one new species from the Upper Cretaceous of Egypt. Palynology 41, 101–116 (2015).

    Article  Google Scholar 

  44. 44

    Hughes, N. F. & McDougall, A. B. Barremian-Aptian angiospermid pollen records from southern England. Rev. Palaeobot. Palynol. 65, 145–151 (1990).

    Article  Google Scholar 

  45. 45

    Walker, J. W. & Walker, A. G. Ultrastructure of Lower Cretaceous angiosperm pollen and the origin and early evolution of flowering plants. Ann. Missouri Bot. Gard . 71, 464–521 (1984).

    Google Scholar 

  46. 46

    Lidgard, S. & Crane, P. R. Angiosperm diversification and Cretaceous floristic trends: a comparison of palynofloras and leaf macrofloras. Paleobiology 16, 77–93 (1990).

    Article  Google Scholar 

  47. 47

    Cornet, B. Late Triassic angiosperm-like pollen from the Richmond Rift Basin of Virginia, U.S.A. Palaeontogr. Abt. B 213, 37–87 (1989).

    Google Scholar 

  48. 48

    Hochuli, P. A. & Feist-Burkhardt, S. Angiosperm-like pollen and Afropollis from the Middle Triassic (Anisian) of the Germanic Basin (Northern Switzerland). Front. Plant Sci. 4, 344 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  49. 49

    Hochuli, P. A. & Feist-Burkhardt, S. A boreal early cradle of angiosperms? Angiosperm-like pollen from the Middle Triassic of the Barents Sea (Norway). J. Micropalaeontol. 23, 97–104 (2004).

    Article  Google Scholar 

  50. 50

    Doyle, J. A. & Hotton, C. L. in Pollen and Spores, Patterns of Diversity Systematics Association Special Volume 44 (eds Blackmore, S. & Barnes, S. H. ) 169–195 (Clarendon Press, 1991).

    Google Scholar 

  51. 51

    Friis, E. M. & Pedersen, K. R. Eucommiitheca, a new pollen organ with Eucommiidites pollen from the Early Cretaceous of Portugal. Grana 35, 104–112 (1996).

    Article  Google Scholar 

  52. 52

    Couper, R. A. Evidence for a possible gymnospermous affinity for Tricolpites troedssonii Erdtman. New Phytol. 55, 280–285 (1956).

    Article  Google Scholar 

  53. 53

    Reymanówna, M. On seeds containing Eucommiidites troedssonii pollen from the Jurassic of Grojec, Poland. Bot. J. Linn. Soc. 61, 147–152 (1968).

    Article  Google Scholar 

  54. 54

    Brenner, G. J. The gymnospermous affinity of Eucommiidites Erdtman, 1948. Rev. Palaeobot. Palynol. 5, 123–127 (1967).

    Article  Google Scholar 

  55. 55

    Pedersen, K. R., Crane, P. R. & Friis, E. M. Pollen organs and seeds with Eucommiidites pollen. Grana 28, 279–294 (1989).

    Article  Google Scholar 

  56. 56

    Mendes, M. M., Pais, J., Pedersen, K. R. & Friis, E. M. Erdtmanitheca portucalensis, a new pollen organ from the Early Cretaceous (Aptian-Albian) of Portugal with Eucommiidites-typepollen. Grana 49, 26–36 (2010).

    Article  Google Scholar 

  57. 57

    Gordenko, N. V. Vladimariales ordo nov. (Gymnospermae) from the Middle Jurassic deposits of the Mikhailovskii Rudnik locality (Kursk Region, European Russia). Paleontol. J. 44, 1281–1307 (2010).

    Article  Google Scholar 

  58. 58

    Shi, G. et al. Early Cretaceous Umkomasia from Mongolia: implications for homology of corystosperm cupules. New Phytol. 210, 1418–1429 (2016).

    Article  PubMed  Google Scholar 

  59. 59

    Pedersen, K. R. & Friis, E. M. Caytonanthus pollen from the Lower and Middle Jurassic. GeoSkrifter 24, 255–267 (1986).

    Google Scholar 

  60. 60

    Friis, E. M., Pedersen, K. R. & Crane, P. R. Angiosperm floral structures from the Early Cretaceous of Portugal. Plant Syst. Evol. 8, 31–49 (1994).

    Google Scholar 

  61. 61

    Friis, E. M., Pedersen, K. R. & Crane, P. R. New diversity among Chlamydospermous seeds from the Early Cretaceous of Portugal and North America. Int. J. Plant Sci. 174, 530–558 (2013).

    Article  Google Scholar 

  62. 62

    Friis, E. M. et al. Phase contrast enhanced synchrotron-radiation X-ray analyses of Cretaceous seeds link Gnetales to extinct Bennettitales. Nature 450, 549–552 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. 63

    Friis, E. M., Pedersen, K. R. & Crane, P. R. Early Cretaceous mesofossils from Portugal and eastern North America related to the Bennettitales-Erdtmanithecales-Gnetales group. Am. J. Bot. 96, 252–283 (2009).

    Article  PubMed  Google Scholar 

  64. 64

    Friis, E. M., Pedersen, K. R. & Crane, P. R. Welwitschioid diversity in the Early Cretaceous: evidence from fossil seeds with pollen from Portugal and eastern North America. Grana 53, 175–196 (2014).

    Article  Google Scholar 

  65. 65

    Hill, C. R. A plant with flower-like organs from the Wealden of the Weald (Lower Cretaceous), southern England. Cretaceous Res. 17, 27–38 (1996).

    Article  Google Scholar 

  66. 66

    Gomez, B., Daviero-Gomez, V., Coiffard, C., Martín-Closas, C. & Dilcher, D. L. Montsechia, an ancient aquatic angiosperm. Proc. Natl Acad. Sci. USA 112, 10985–10988 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. 67

    Wang, X. & Han, G. The earliest ascidiate carpel and its implications for angiosperm evolution. Acta Geol. Sinica 85, 998–1112 (2011).

    Article  Google Scholar 

  68. 68

    Li, H. Early Cretaceous sarraceniacean-like pitcher plants from China. Acta Bot. Gallica 152, 227–234 (2005).

    Article  Google Scholar 

  69. 69

    Wong, W. O., Dilcher, D. L., Labandeira, C. C., Sun, G. & Fleischmann, A. Early Cretaceous Archaeamphora is not a carnivorous angiosperm. Front. Plant Sci. (2015).

    Google Scholar 

  70. 70

    Han, G., Fu, X.-P., Liu, Z.-J. & Wang, X. A new angiosperm genus from the Lower Cretaceous Yixian Formation, western Liaoning, China. Acta Geol. Sinica 87, 916–925, (2013).

    Article  Google Scholar 

  71. 71

    Wang, X. & Zheng, S. The earliest normal flower from Liaoning Province, China. J. Integr. Plant Biol. 51, 800–811 (2009).

    Article  PubMed  Google Scholar 

  72. 72

    Duan, S. The oldest angiosperm – a tricarpous female reproductive fossil from western Liaoning Province, NE China. Sci. China Ser. D-Earth Sci. 41, 14–20 (1998).

    Article  Google Scholar 

  73. 73

    Yang, Y. A systematic classification of Ephedraceae: living and fossil. Phytotaxa 158, 283–290 (2014).

    Article  Google Scholar 

  74. 74

    Yang, Y. & Ferguson, D. K. Macrofossil evidence unveiling evolution and ecology of early Ephedraceae. Perspect. Plant Ecol. Evol. Syst. 17, 331–346 (2015).

    Article  Google Scholar 

  75. 75

    Krassilov, V. A. Early Cretaceous flora of Mongolia. Palaeontogr. Abt. B 181, 1–43 (1982).

    Google Scholar 

  76. 76

    Sun, G., Dilcher, D. L., Zheng, S. & Zhou, Z. In search of the first flower: a Jurassic angiosperm, Archaefructus, from northeast China. Science 282, 1692–1695 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. 77

    Crane, P. R. Review of Cornet, B., The leaf venation and reproductive structures of a Late Triassic angiosperm, Sanmiguelia lewisii. Taxon 36, 778–779 (1987).

    Article  Google Scholar 

  78. 78

    Liu, Z.-J. & Wang, X. A perfect flower from the Jurassic of China. Hist. Biol. 28, 707–719 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  79. 79

    Han, G. et al. A whole plant herbaceous angiosperm from the Middle Jurassic of China. Acta Geol. Sinica 90, 19–29 (2016).

    Article  Google Scholar 

  80. 80

    Liu, Z.-J. & Wang, X. Yuhania : a unique angiosperm from the Middle Jurassic of Inner Mongolia, China. Hist. Biol. (2016).

    Google Scholar 

  81. 81

    Wang, X. & Wang, S.-J. Xingxueanthus: an enigmatic Jurassic seed plant and its implications for the origin of angiospermy. Acta Geol. Sinica 84, 47–55 (2010).

    Article  Google Scholar 

  82. 82

    Wang, X., Duan, S., Geng, B., Cui, J. & Yang, Y. Schmeissneria: a missing link to angiosperms? BMC Evol. Biol. 7, 14 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Wang, X. Schmeissneria: an angiosperm from the Early Jurassic. J. Syst. Evol. 48, 326–335 (2010).

    Article  Google Scholar 

  84. 84

    van Konijnenburg-van Cittert, J. H. A. The Early Jurassic male ginkgoalean inflorescence Stachyopitys preslii Schenk and its in situ pollen. Scr. Geol. Special Issue 7, 141–149 (2010).

    Google Scholar 

  85. 85

    Zheng, S. & Wang, X. An undercover angiosperm from the Jurassic of China. Acta Geol. Sinica 84, 895–902 (2010).

    Article  Google Scholar 

  86. 86

    Deng, S., Hilton, J., Glasspool, I. J. & Dejax, J. Pollen cones and associated leaves from the Lower Cretaceous of China and a re-evaluation of Mesozoic male cycad cones. J. Syst. Palaeontol. 12, 1001–1023 (2014).

    Article  Google Scholar 

  87. 87

    Krassilov, V. A. & Bugdaeva, E. V. Gnetalean plants from the Jurassic of Ust–Balej, East Siberia. Rev. Palaeobot. Palynol. 53, 359–374 (1988).

    Article  Google Scholar 

  88. 88

    Krassilov, V. A. & Bugdaeva, E. V. An angiosperm cradle community and new proangiosperm taxa. Acta Palaeobot. Suppl. 2, 111–127 (1999).

    Google Scholar 

  89. 89

    Tekleva, M. V. & Krassilov, V. A. Comparative pollen morphology and ultrastructure of modern and fossil gnetophytes. Rev. Palaeobot. Palynol. 156, 130–138 (2009).

    Article  Google Scholar 

  90. 90

    Mohr, B. A. R. & Bernardes- de-Oliveira, M. E. C. Endressinia brasiliana, a Magnolialean Angiosperm from the Lower Cretaceous Crato Formation (Brazil). Int. J. Plant Sci. 165, 1121–1133 (2004).

    Article  Google Scholar 

  91. 91

    Mohr, B. A. R., Bernardes-de-Oliveira, M. E. C. & Taylor, D. W. Pluricarpellatia, a nymphaealean angiosperm from the Lower Cretaceous of northern Gondwana (Crato Formation, Brazil). Taxon 57, 1147–1158 (2008).

    Article  Google Scholar 

  92. 92

    Cantrill, D. J. & Nichols, G. J. Taxonomy and palaeoecology of Early Cretaceous (Late Albian) angiosperm leaves from Alexander Island, Antarctica. Rev. Palaeobot. Palynol. 92, 1–28 (1996).

    Article  Google Scholar 

  93. 93

    Upchurch, G. R. Cuticle evolution in Early Cretaceous angiosperms from the Potomac Group of Virginia and Maryland. Ann. Missouri Bot. Gard. 71, 522–550 (1984).

    Article  Google Scholar 

Download references


We thank the Institute of Vertebrate Paleontology and Paleoanthropology in Beijing, China for loaning the specimen of Solaranthus daohugensis and C. Pott for photographing this specimen and the Tsuga cone. We thank P. von Knorring for creating Figs 1 and 2. We thank J. Doyle and two anonymous reviewers for constructive comments on the manuscript. This work was funded in part by NSF grant DEB-1348456 to P.S.H. and P.R.C. and the Swedish Research Council grant 2014-5228 to E.M.F.

Author information




All authors contributed to the design and scope of the paper, and evaluations of the fossil taxa discussed in the paper. All authors contributed to writing and revising the manuscript.

Corresponding author

Correspondence to Patrick S. Herendeen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Herendeen, P., Friis, E., Pedersen, K. et al. Palaeobotanical redux: revisiting the age of the angiosperms. Nature Plants 3, 17015 (2017).

Download citation

Further reading