Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Systemic transport of trans-zeatin and its precursor have differing roles in Arabidopsis shoots

Abstract

Organ-to-organ signal transmission is essential for higher organisms to ensure coordinated biological reactions during metabolism and morphogenesis. Similar to organs in animals, plant organs communicate by various signalling molecules. Among them, cytokinins, a class of phytohormones, play a key role as root-to-shoot long-distance signals, regulating various growth and developmental processes in shoots1,2. Previous studies have proposed that trans-zeatin-riboside, a type of cytokinin precursor, is a major long-distance signalling form in xylem vessels and its action depends on metabolic conversion via the LONELY GUY enzyme in proximity to the site of action35. Here we report an additional long-distance signalling form of cytokinin: trans-zeatin, an active form. Grafting between various cytokinin biosynthetic and transportation mutants revealed that root-to-shoot translocation of trans-zeatin, a minor component of xylem cytokinin, controls leaf size but not meristem activity-related traits, whereas that of trans-zeatin riboside is sufficient for regulating both traits. Considering the ratio of trans-zeatin to trans-zeatin-riboside in xylem and their delivery rate change in response to environmental conditions, this dual long-distance cytokinin signalling system allows plants to fine-tune the manner of shoot growth to adapt to fluctuating environments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: tZ, an active form of cytokinin, is translocated from the root to shoot via the xylem.
Figure 2: Recovery of log1234578 shoot phenotypes grafted onto a WT root.
Figure 3: tZ, but not its precursor, is effective for inducing the type-A ARR and enhancing growth in log1234578 shoots.
Figure 4: Not all shoot traits are recovered in the log1234578/WT.

Similar content being viewed by others

References

  1. Kieber, J. J. & Schaller, G. E. Cytokinins. Arabidopsis Book 12, e0168 (2014).

    Article  Google Scholar 

  2. Sakakibara, H. Cytokinins: activity, biosynthesis, and translocation. Annu. Rev. Plant. Biol. 57, 431–449 (2006).

    Article  CAS  Google Scholar 

  3. Kurakawa, T. et al. Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445, 652–655 (2007).

    Article  CAS  Google Scholar 

  4. Hirose, N. et al. Regulation of cytokinin biosynthesis, compartmentalization and translocation. J. Exp. Bot. 59, 75–83 (2008).

    Article  CAS  Google Scholar 

  5. Tokunaga, H. et al. Arabidopsis lonely guy (LOG) multiple mutants reveal a central role of the LOG-dependent pathway in cytokinin activation. Plant J. 69, 355–365 (2012).

    Article  CAS  Google Scholar 

  6. Lacombe, B. & Achard, P. Long-distance transport of phytohormones through the plant vascular system. Curr. Opin. Cell. Biol. 34, 1–8 (2016).

    Article  CAS  Google Scholar 

  7. Okamoto, S., Tabata, R. & Matsubayashi, Y. Long-distance peptide signalling essential for nutrient homeostasis in plants. Curr. Opin. Cell. Biol. 34, 35–40 (2016).

    Article  CAS  Google Scholar 

  8. Hwang, I., Sheen, J. & Muller, B. Cytokinin signaling networks. Annu. Rev. Plant Biol. 63, 353–380 (2012).

    Article  CAS  Google Scholar 

  9. Osugi, A. & Sakakibara, H. Q&A: how do plants respond to cytokinins and what is their importance? BMC Biol. 13, 102 (2015).

    Article  Google Scholar 

  10. Kiba, T., Takei, K., Kojima, M. & Sakakibara, H. Side-chain modification of cytokinins controls shoot growth in Arabidopsis. Dev. Cell 27, 452–461 (2013).

    Article  CAS  Google Scholar 

  11. Kuroha, T. et al. Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. Plant Cell 21, 3152–3169 (2009).

    Article  CAS  Google Scholar 

  12. Miyawaki, K. et al. Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proc. Natl Acad. Sci. USA 103, 16598–16603 (2006).

    Article  CAS  Google Scholar 

  13. De Rybel, B. et al. Integration of growth and patterning during vascular tissue formation in Arabidopsis. Science 345, 1255215 (2014).

    Article  Google Scholar 

  14. Ohashi-Ito, K. et al. A bHLH complex activates vascular cell division via cytokinin action in root apical meristem. Curr. Biol. 24, 2053–2058 (2014).

    Article  CAS  Google Scholar 

  15. Gruel, J. et al. An epidermis-driven mechanism positions and scales stem cell niches in plants. Sci. Adv. 2, e1500989 (2016).

    Article  Google Scholar 

  16. Ko, D. et al. Arabidopsis ABCG14 is essential for the root-to-shoot translocation of cytokinin. Proc. Natl Acad. Sci. USA 111, 7150–7155 (2014).

    Article  CAS  Google Scholar 

  17. Zhang, K. W. et al. Arabidopsis ABCG14 protein controls the acropetal translocation of root-synthesized cytokinins. Nat. Commun. 5, 3274 (2014).

    Article  Google Scholar 

  18. Foo, E. et al. Feedback regulation of xylem cytokinin content is conserved in pea and Arabidopsis. Plant Physiol. 143, 1418–1428 (2007).

    Article  CAS  Google Scholar 

  19. Takei, K., Sakakibara, H., Taniguchi, M. & Sugiyama, T. Nitrogen-dependent accumulation of cytokinins in root and the translocation to leaf: implication of cytokinin species that induces gene expression of maize response regulator. Plant Cell Physiol. 42, 85–93 (2001).

    Article  CAS  Google Scholar 

  20. Romanov, G. A., Lomin, S. N. & Schmülling, T. Biochemical characteristics and ligand-binding properties of Arabidopsis cytokinin receptor AHK3 compared to CRE1/AHK4 as revealed by a direct binding assay. J. Exp. Bot. 57, 4051–4058 (2006).

    Article  CAS  Google Scholar 

  21. Stolz, A. et al. The specificity of cytokinin signalling in Arabidopsis thaliana is mediated by differing ligand affinities and expression profiles of the receptors. Plant J. 67, 157–168 (2011).

    Article  CAS  Google Scholar 

  22. Hothorn, M., Dabi, T. & Chory, J. Structural basis for cytokinin recognition by Arabidopsis thaliana histidine kinase 4. Nat. Chem. Biol. 7, 766–768 (2011).

    Article  CAS  Google Scholar 

  23. Lomin, S. N. et al. Plant membrane assays with cytokinin receptors underpin the unique role of free cytokinin bases as biologically active ligands. J. Exp. Bot. 66, 1851–1863 (2015).

    Article  CAS  Google Scholar 

  24. Matsumoto-Kitano, M. et al. Cytokinins are central regulators of cambial activity. Proc. Natl Acad. Sci. USA 105, 20027–20031 (2008).

    Article  CAS  Google Scholar 

  25. Adamowski, M. & Friml, J. PIN-dependent auxin transport: action, regulation, and evolution. Plant Cell 27, 20–32 (2015).

    Article  CAS  Google Scholar 

  26. Regnault, T. et al. The gibberellin precursor GA12 acts as a long-distance growth signal in Arabidopsis. Nat. Plants 1, 15073 (2015).

    Article  CAS  Google Scholar 

  27. Katsumi, M., Foard, D. E. & Phinney, R. O. Evidence for the translocation of gibberellin A3 and gibberellin-like substances in grafts between normal, dwarf1 and dwarf5 seedlings of Zea mays L. Plant Cell Physiol. 24, 379–388 (1983).

    CAS  Google Scholar 

  28. Boursiac, Y. et al. ABA transport and transporters. Trends Plant Sci. 18, 325–333 (2013).

    Article  CAS  Google Scholar 

  29. Takei, K. et al. AtIPT3 is a key determinant of nitrate-dependent cytokinin biosynthesis in Arabidopsis. Plant Cell Physiol. 45, 1053–1062 (2004).

    Article  CAS  Google Scholar 

  30. Boonman, A. et al. Cytokinin import rate as a signal for photosynthetic acclimation to canopy light gradients. Plant Physiol. 143, 1841–1852 (2007).

    Article  CAS  Google Scholar 

  31. Fujiwara, T., Hirai, M. Y., Chino, M., Komeda, Y. & Naito, S. Effects of sulfur nutrition on expression of the soybean seed storage protein genes in transgenic Petunia. Plant Physiol. 99, 263–268 (1992).

    Article  CAS  Google Scholar 

  32. Notaguchi, M. et al. Long-distance, graft-transmissible action of Arabidopsis FLOWERING LOCUS T protein to promote flowering. Plant Cell Physiol. 49, 1645–1658 (2008).

    Article  CAS  Google Scholar 

  33. Marsch-Martinez, N. et al. An efficient flat-surface collar-free grafting method for Arabidopsis thaliana seedlings. Plant Methods 9, 14 (2013).

    Article  Google Scholar 

  34. Kojima, M. et al. Highly sensitive and high-throughput analysis of plant hormones using MS-probe modification and liquid chromatographytandem mass spectrometry: an application for hormone profiling in Oryza sativa. Plant Cell Physiol. 50, 1201–1214 (2009).

    Article  CAS  Google Scholar 

  35. Krall, L., Raschke, M., Zenk, M. H. & Baron, C. The Tzs protein from Agrobacterium tumefaciens C58 produces zeatin riboside 5′-phosphate from 4-hydroxy-3-methyl-2-(E)-butenyl diphosphate and AMP. FEBS Lett. 527, 315–318 (2002).

    Article  CAS  Google Scholar 

  36. Takei, K., Dekishima, Y., Eguchi, T., Yamaya, T. & Sakakibara, H. A new method for enzymatic preparation of isopentenyladenine-type and trans-zeatin-type cytokinins with radioisotope-labelling. J. Plant Res. 116, 259–263 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Ifuku (RIKEN) for support with all of the experiments A.O. performed. We also thank T. Notaguchi (Nagoya University) for instruction on the grafting technique. This work was supported by the Grant-in-Aid for Young Scientists (B; no. JP16K18566), the Grant-in-Aid for Scientific Research on Innovative Areas (no. JP16H01477 and JP17H06473) and the NC-CARP project from the Ministry of Education, Culture, Sports, Science and Technology and JST CREST (no. JPMJCR13B1), Japan.

Author information

Authors and Affiliations

Authors

Contributions

A.O. conceived the study. A.O., T.K. and H.S. designed the experiments. A.O., M.K., Y.T., N.U. and T.K. performed the experiments. A.O., T.K. and H.S. discussed the results and wrote the manuscript.

Corresponding author

Correspondence to Hitoshi Sakakibara.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–7, Supplementary Tables 1–4. (PDF 3510 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osugi, A., Kojima, M., Takebayashi, Y. et al. Systemic transport of trans-zeatin and its precursor have differing roles in Arabidopsis shoots. Nature Plants 3, 17112 (2017). https://doi.org/10.1038/nplants.2017.112

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2017.112

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing