Progress and prospects in plant genome editing

Abstract

The emergence of sequence-specific nucleases that enable genome editing is revolutionizing basic and applied biology. Since the introduction of CRISPR–Cas9, genome editing has become widely used in transformable plants for characterizing gene function and improving traits, mainly by inducing mutations through non-homologous end joining of double-stranded breaks generated by CRISPR–Cas9. However, it would be highly desirable to perform precision gene editing in plants, especially in transformation-recalcitrant species. Recently developed Cas9 variants, novel RNA-guided nucleases and base-editing systems, and DNA-free CRISPR–Cas9 delivery methods now provide great opportunities for plant genome engineering. In this Review Article, we describe the current status of plant genome editing, focusing on newly developed genome editing tools and methods and their potential applications in plants. We also discuss the specific challenges facing plant genome editing, and future prospects.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: General procedure of plant genome editing using CRISPR–Cas9.
Figure 2: DNA-free genome editing with CRISPR–Cas9 RNAs and RNP in plants.
Figure 3: Strategies for precision genome editing in plants.

References

  1. 1

    Bortesi, L. & Fischer, R. The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol. Adv. 33, 41–52 (2015).

    CAS  PubMed  Article  Google Scholar 

  2. 2

    Brazelton, V. A. Jr et al. A quick guide to CRISPR sgRNA design tools. GM Crops Food 6, 266–276 (2015).

    PubMed  Article  Google Scholar 

  3. 3

    Lowe, K. et al. Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell 28, 1998–2015 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4

    Zhang, Y. et al. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat. Commun. 7, 12617 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5

    Kim, S., Kim, D., Cho, S. W., Kim, J. & Kim, J. S. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 24, 1012–1019 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6

    Sprink, T., Eriksson, D., Schiemann, J. & Hartung, F. Regulatory hurdles for genome editing: process- vs. product-based approaches in different regulatory contexts. Plant Cell Rep. 35, 1493–1506 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7

    Woo, J. W. et al. DNA-free genome editing in plants with preassembled CRISPR–Cas9 ribonucleoproteins. Nat. Biotechnol. 33, 1162–1164 (2015).

    CAS  PubMed  Article  Google Scholar 

  8. 8

    Svitashev, S. et al. Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes. Nat. Commun. 7, 13274 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9

    Liang, Z. et al. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat. Commun. 8, 14261 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10

    Latorre, A., Latorre, A. & Somoza, Á . Modified RNAs in CRISPR/Cas9: an old trick works again. Angew. Chem. Int. Ed. Engl. 55, 3548–3550 (2016).

    CAS  PubMed  Article  Google Scholar 

  11. 11

    Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12

    Fu, Y. et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31, 822–826 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13

    Hsu, P. D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14

    Salvi, S., Druka, A., Milner, S. G. & Gruszka, D. in Biotechnological Approaches to Barley Improvement (eds Kumlehn, J. & Stein, N. ) 287–310 (Springer, 2014).

    Google Scholar 

  15. 15

    Zhang, D., Li, Z. & Li, J. F. Targeted gene manipulation in plants using the CRISPR/Cas technology. J. Genet. Genomics 43, 251–262 (2016).

    PubMed  Article  Google Scholar 

  16. 16

    Zhang, H. et al. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol. J. 12, 797–807 (2014).

    CAS  PubMed  Article  Google Scholar 

  17. 17

    Crosetto, N. et al. Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing. Nat. Methods 10, 361–365 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18

    Tsai, S. Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 33, 187–197 (2015).

    CAS  PubMed  Article  Google Scholar 

  19. 19

    Frock, R. L. et al. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat. Biotechnol. 33, 179–186 (2015).

    CAS  PubMed  Article  Google Scholar 

  20. 20

    Kim, D. et al. Digenome-seq: genome-wide profiling of CRISPR–Cas9 off-target effects in human cells. Nat. Methods 12, 237–243 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21

    Hsu, P. D., Lander, E. S. & Zhang, F. Development and applications of CRISPR–Cas9 for genome engineering. Cell 157, 1262–1278 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22

    Schiml, S., Fauser, F. & Puchta, H. The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J. 80, 1139–1150 (2014).

    CAS  PubMed  Article  Google Scholar 

  23. 23

    Slaymaker, I. M. et al. Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84–88 (2016).

    CAS  PubMed  Article  Google Scholar 

  24. 24

    Kleinstiver, B. P. et al. High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490–495 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25

    Chylinski, K., Le Rhun, A. & Charpentier, E. The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biol. 10, 726–737 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26

    Esvelt K. M. et al. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat. Methods 10, 1116–1121 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27

    Hou, Z. et al. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc. Natl Acad. Sci. USA 110, 15644–15649 (2013).

    CAS  PubMed  Article  Google Scholar 

  28. 28

    Kleinstiver, B. P. et al. Engineered CRISPR–Cas9 nucleases with altered PAM specificities. Nature 523, 481–485 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  29. 29

    Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30

    Hu, X. et al. Expanding the range of CRISPR/Cas9 genome editing in rice. Mol. Plant 9, 943–945 (2016).

    CAS  PubMed  Article  Google Scholar 

  31. 31

    Karvelis, T. et al. Rapid characterization of CRISPR–Cas9 protospacer adjacent motif sequence elements. Genome Biol. 16, 253 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  32. 32

    Steinert, J., Schiml, S., Fauser, F. & Puchta, H. Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus. Plant J. 84, 1295–1305 (2015).

    CAS  PubMed  Article  Google Scholar 

  33. 33

    Kaya, H. et al. Highly specific targeted mutagenesis in plants using Staphylococcus aureus Cas9. Sci. Rep. 6, 26871 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34

    Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759–771 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35

    Maresca, M., Lin, V. G., Guo, N. & Yang, Y. Obligate ligation-gated recombination (ObLiGaRe): custom-designed nuclease-mediated targeted integration through nonhomologous end joining. Genome Res. 23, 539–546 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36

    Shan, Q. et al. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol. 31, 686–688 (2013).

    CAS  PubMed  Article  Google Scholar 

  37. 37

    Xu, R. et al. Generation of targeted mutant rice using a CRISPR-Cpf1 system. Plant Biotechnol. J. 15, 713–717 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38

    Hu, X., Wang, C., Liu, Q., Fu, Y. & Wang, K. Targeted mutagenesis in rice using CRISPR-Cpf1 system. J. Genet. Genomics 44, 71–73 (2017).

    PubMed  Article  Google Scholar 

  39. 39

    Kim, H. et al. CRISPR/Cpf1-mediated DNA-free plant genome editing. Nat. Commun. 8, 14406 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40

    Tang, X. et al. A CRISPR–Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat. Plants 3, 17018 (2017).

    CAS  PubMed  Article  Google Scholar 

  41. 41

    Zhang, H. Y. et al. MISSA 2.0: an updated synthetic biology toolbox for assembly of orthogonal CRISPR/Cas systems. Sci. Rep. 7, 41993 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42

    Rouet, P., Smih, F. & Jasin, M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol. Cell. Biol. 14, 8096–8106 (1994).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43

    Puchta, H., Dujon, B. & Hohn, B. Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination. Proc. Natl Acad. Sci. USA 93, 5055–5060 (1996).

    CAS  PubMed  Article  Google Scholar 

  44. 44

    Puchta, H. & Fauser, F. Synthetic nucleases for genome engineering in plants: prospects for a bright future. Plant J. 78, 727–741 (2014).

    CAS  PubMed  Article  Google Scholar 

  45. 45

    Voytas, D. F. & Gao, C. Precision genome engineering and agriculture: opportunities and regulatory challenges. PLoS Biol. 12, e1001877 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  46. 46

    Svitashev, S. et al. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol. 169, 931–945 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  47. 47

    Endo, M., Mikami, M. & Toki, S. Biallelic gene targeting in rice. Plant Physiol. 170, 667–677 (2016).

    CAS  PubMed  Article  Google Scholar 

  48. 48

    Baltes, N. J., Gil-Humanes, J., Cermak, T., Atkins, P. A. & Voytas D. F. DNA replicons for plant genome engineering. Plant Cell 26, 151–163 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49

    Čermák, T., Baltes, N. J., Čegan, R., Zhang, Y. & Voytas, D. F. High-frequency, precise modification of the tomato genome. Genome Biol. 16, 232 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  50. 50

    Butler, N. M., Baltes, N. J., Voytas, D. F. & Douches, D. S. Geminivirus-mediated genome editing in potato (Solanum tuberosum L.) using sequence-specific nucleases. Front. Plant Sci. 7, 1045 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  51. 51

    Gil-Humanes, J. et al. High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. Plant J. 89, 1251–1262 (2017).

    CAS  PubMed  Article  Google Scholar 

  52. 52

    Wang, M. et al. Gene targeting by homology-directed repair in rice using a geminivirus-based CRISPR/Cas9 System. Mol. Plant 10, 1007–1010 (2017).

    CAS  PubMed  Article  Google Scholar 

  53. 53

    Weinthal, D. M., Taylor, R. A. & Tzfira, T. Nonhomologous end joining-mediated gene replacement in plant cells. Plant Physiol. 162, 390–400 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54

    Li, J. et al. Gene replacements and insertions in rice by intron targeting using CRISPR–Cas9. Nat. Plants 2, 16139 (2016).

    CAS  PubMed  Article  Google Scholar 

  55. 55

    Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56

    Nishida, K. et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353, aaf8729 (2016).

    PubMed  Article  CAS  Google Scholar 

  57. 57

    Ma, Y. et al. Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nat. Methods 13, 1029–1035 (2016).

    CAS  PubMed  Article  Google Scholar 

  58. 58

    Hess, G. et al. Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nat. Methods 13, 1036–1042 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59

    Yang, L. et al. Engineering and optimising deaminase fusions for genome editing. Nat. Commun. 7, 13330 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60

    Li, J., Sun, Y., Du, J., Zhao, Y. & Xia, L. Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system. Mol. Plant 10, 526–529 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. 61

    Lu, Y. & Zhu, J. K. Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 System. Mol. Plant 10, 523–525 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  62. 62

    Zong, Y. et al. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat. Biotechnol. 35, 438–440 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  63. 63

    Ren, B. et al. A CRISPR/Cas9 toolkit for efficient targeted base editing to induce genetic variations in rice. Sci. China Life Sci. 60, 516–519 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  64. 64

    Shimatani, Z. et al. Targeted base editing in rice and tomato using a CRISPR–Cas9 cytidine deaminase fusion. Nat. Biotechnol. 35, 441–443 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  65. 65

    Kim, Y. B. et al. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat. Biotechnol. 35, 371–376 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66

    Carlson, J. C., Badran, A. H., Guggiana-Nilo, D. A. & Liu, D. R. Negative selection and stringency modulation in phage-assisted continuous evolution. Nat. Chem. Biol. 10, 216–222 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. 67

    Piatek, A. et al. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors. Plant Biotechnol. J. 13, 578–589 (2015).

    CAS  PubMed  Article  Google Scholar 

  68. 68

    Lowder, L. G. et al. A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol. 169, 971–985 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  69. 69

    Chen, B. et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155, 1479–1491 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. 70

    Tanenbaum, M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S. & Vale, R. D. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159, 635–646 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. 71

    Deng, W., Shi, X., Tjian, R., Lionnet, T. & Singer, R. H. CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells. Proc. Natl Acad. Sci. USA 112, 11870–11875 (2015).

    CAS  PubMed  Article  Google Scholar 

  72. 72

    Ma, H. et al. Multicolor CRISPR labeling of chromosomal loci in human cells. Proc. Natl Acad. Sci. USA 112, 3002–3007 (2015).

    CAS  PubMed  Article  Google Scholar 

  73. 73

    Ochiai, H., Sugawara, T. & Yamamoto, T. Simultaneous live imaging of the transcription and nuclear position of specific genes. Nucleic Acids Res. 43, e127 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  74. 74

    Hilton, I. B. et al. Epigenome editing by a CRISPR–Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33, 510–517 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. 75

    Thakore, P. I. et al. Highly specific epigenome editing by CRISPR–Cas9 repressors for silencing of distal regulatory elements. Nat. Methods 12, 1143–1149 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. 76

    Vojta, A. et al. Repurposing the CRISPR–Cas9 system for targeted DNA methylation. Nucleic Acids Res. 44, 5615–5628 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77

    Tak, Y. G. & Farnham, P. J. Making sense of GWAS: using epigenomics and genome engineering to understand the functional relevance of SNPs in non-coding regions of the human genome. Epigenetics Chromatin 8, 57 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  78. 78

    Sadhu, M. J., Bloom, J. S., Day, L. & Kruglyak, L. CRISPR-directed mitotic recombination enables genetic mapping without crosses. Science 352, 1113–1116 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. 79

    Østerberg, J. T. et al. Accelerating the domestication of new crops: feasibility and approaches. Trends Plant Sci. 22, 373–384 (2017).

    PubMed  Article  CAS  Google Scholar 

  80. 80

    Ali, Z. et al. CRISPR/Cas9-mediated viral interference in plants. Genome Biol. 16, 238 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  81. 81

    Baltes, N. J. et al. Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system. Nat. Plants 1, 15145 (2015).

    CAS  Article  Google Scholar 

  82. 82

    Ji, X. et al. Establishing a CRISPR–Cas-like immune system conferring DNA virus resistance in plants. Nat. Plants 1, 15144 (2015).

    CAS  PubMed  Article  Google Scholar 

  83. 83

    Miao, J. et al. Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res. 23, 1233 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. 84

    Xu, R. et al. Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR-Cas system in rice. Rice 7, 5 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  85. 85

    Wang, Y. et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 32, 947–951 (2014).

    CAS  PubMed  Article  Google Scholar 

  86. 86

    Ito, Y. et al. CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochem. Biophys. Res. Commun. 467, 76–82 (2015).

    CAS  PubMed  Article  Google Scholar 

  87. 87

    de Toledo Thomazella, D. P., Brail, Q., Dahlbeck, D. & Staskawicz, B. J. CRISPR–Cas9 mediated mutagenesis of a DMR6 ortholog in tomato confers broad-spectrum disease resistance. Preprint at http://biorxiv.org/content/early/2016/07/20/064824 (2016).

  88. 88

    Wang, F. et al. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS ONE 11, e0154027 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  89. 89

    Shi, J. et al. ARGOS8 variants generated by CRISPR–Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol. J. 15, 207–216 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  90. 90

    Sun, Y. et al. Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Front. Plant Sci.https://doi.org/10.3389/fpls.2017.00298 (2017).

Download references

Acknowledgements

We apologize for the omission of any references that could not be included in this Review Article due to the space constraints. The work in the authors’ labs was supported by grants from the National Transgenic Science and Technology Program (2016ZX08010-002), the National Key Research and Development Program of China (2016YFD0100602), the Scientific Program of Beijing Municipal Commission of Science and Technology (Z171100001517001), the Chinese Academy of Sciences (XDB11030500), and the National Natural Science Foundation of China (31672015).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Caixia Gao or Jin-Long Qiu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yin, K., Gao, C. & Qiu, J. Progress and prospects in plant genome editing. Nature Plants 3, 17107 (2017). https://doi.org/10.1038/nplants.2017.107

Download citation

Further reading