Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the SHR–SCR heterodimer bound to the BIRD/IDD transcriptional factor JKD

Abstract

The plant-specific GAI, RGA and SCR (GRAS) family proteins play critical roles in plant development and signalling. Two GRAS proteins, SHORT-ROOT (SHR) and SCARECROW (SCR), cooperatively direct asymmetric cell division and the patterning of root cell types by transcriptional control in conjunction with BIRD/INDETERMINATE DOMAIN (IDD) transcription factors, although precise details of these specific interactions and actions remain unknown. Here, we present the crystal structures of the SHR–SCR binary and JACKDAW (JKD)/IDD10–SHR–SCR ternary complexes. Each GRAS domain comprises one α/β core subdomain with an α-helical cap that mediates heterodimerization by forming an intermolecular helix bundle. The α/β core subdomain of SHR forms the BIRD binding groove, which specifically recognizes the zinc fingers of JKD. We identified a conserved SHR-binding motif in 13 BIRD/IDD transcription factors. Our results establish a structural basis for GRAS–GRAS and GRAS–BIRD interactions and provide valuable clues towards our understanding of these regulators, which are involved in plant-specific signalling networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the heterodimeric SHR–SCR complex.
Figure 2: Structural comparison and GRAS conserved motifs.
Figure 3: The SHR and SCR interaction.
Figure 4: Zinc fingers of MGP and JKD essential for SHR–SCR binding and DNA binding.
Figure 5: BIRD/IDD ZFs bind SHR of the SHR–SCR complex.
Figure 6: A DNA-bound model of the ZFs of BIRD/IDD transcription factors bound to the SHR–SCR complex.

Similar content being viewed by others

References

  1. Pauluzzi, G. et al. Surfing along the root ground tissue gene network. Dev. Biol. 365, 14–22 (2012).

    Article  CAS  Google Scholar 

  2. Petricka, J. J., Winter, C. M. & Benfey, P. N. Control of Arabidopsis root development. Annu. Rev. Plant Biol. 63, 563–590 (2012).

    Article  CAS  Google Scholar 

  3. Benfey, P. N. et al. Root development in Arabidopsis: four mutants with dramatically altered root morphogenesis. Development 119, 57–70 (1993).

    CAS  PubMed  Google Scholar 

  4. Scheres, B. et al. Mutations affecting the radial organisation of the Arabidopsis root display specific defects throughout the embryonic axis. Development 121, 53–62 (1995).

    CAS  Google Scholar 

  5. Di Laurenzio, L. et al. The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86, 423–433 (1996).

    Article  CAS  Google Scholar 

  6. Helariutta, Y. et al. The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 101, 555–567 (2000).

    Article  CAS  Google Scholar 

  7. Sabatini, S., Heidstra, R., Wildwater, M. & Scheres, B. SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem. Genes Dev. 17, 354–358 (2003).

    Article  CAS  Google Scholar 

  8. Cui, H., Kong, D., Liu, X. & Hao, Y. SCARECROW, SCR-LIKE 23 and SHORT-ROOT control bundle sheath cell fate and function in Arabidopsis thaliana. Plant J. 78, 319–327 (2014).

    Article  CAS  Google Scholar 

  9. Nakajima, K., Sena, G., Nawy, T. & Benfey, P. N. Intercellular movement of the putative transcription factor SHR in root patterning. Nature 413, 307–311 (2001).

    Article  CAS  Google Scholar 

  10. Heidstra, R., Welch, D. & Scheres, B. Mosaic analyses using marked activation and deletion clones dissect Arabidopsis SCARECROW action in asymmetric cell division. Genes Dev. 18, 1964–1969 (2004).

    Article  CAS  Google Scholar 

  11. Cui, H. et al. An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants. Science 316, 421–425 (2007).

    Article  CAS  Google Scholar 

  12. Levesque, M. P. et al. Whole-genome analysis of the SHORT-ROOT developmental pathway in Arabidopsis. PLoS Biol. 4, e143 (2006).

    Article  Google Scholar 

  13. Colasanti, J. et al. The maize INDETERMINATE1 flowering time regulator defines a highly conserved zinc finger protein family in higher plants. BMC Genomics 7, 158 (2006).

    Article  Google Scholar 

  14. Sozzani, R. et al. Spatiotemporal regulation of cell-cycle genes by SHORTROOT links patterning and growth. Nature 466, 128–132 (2010).

    Article  CAS  Google Scholar 

  15. Welch, D. et al. Arabidopsis JACKDAW and MAGPIE zinc finger proteins delimit asymmetric cell division and stabilize tissue boundaries by restricting SHORT-ROOT action. Genes Dev. 21, 2196–2204 (2007).

    Article  CAS  Google Scholar 

  16. Long, Y. et al. Arabidopsis BIRD zinc finger proteins jointly stabilize tissue boundaries by confining the cell fate regulator SHORT-ROOT and contributing to fate specification. Plant Cell 27, 1185–1199 (2015).

    Article  CAS  Google Scholar 

  17. Moreno-Risueno, M. A. et al. Transcriptional control of tissue formation throughout root development. Science 350, 426–430 (2015).

    Article  CAS  Google Scholar 

  18. Pysh, L. D., Wysocka-Diller, J. W., Camilleri, C., Bouchez, D. & Benfey, P. N. The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant J. 18, 111–119 (1999).

    Article  CAS  Google Scholar 

  19. Bolle, C. The role of GRAS proteins in plant signal transduction and development. Planta 218, 683–692 (2004).

    Article  CAS  Google Scholar 

  20. Murase, K., Hirano, Y., Sun, T. P. & Hakoshima, T. Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature 456, 459–463 (2008).

    Article  CAS  Google Scholar 

  21. Sun, X., Jones, W. T. & Rikkerink, E. H. GRAS proteins: the versatile roles of intrinsically disordered proteins in plant signalling. Biochem. J. 442, 1–12 (2012).

    Article  CAS  Google Scholar 

  22. Gallagher, K. L. & Benfey, P. N. Both the conserved GRAS domain and nuclear localization are required for SHORT-ROOT movement. Plant J. 57, 785–797 (2009).

    Article  CAS  Google Scholar 

  23. Martin, J. L. & McMillan, F. M. SAM (dependent) I AM: the S-adenosylmethionine-dependent methyltransferase fold. Curr. Opin. Struct. Biol. 12, 783–793 (2002).

    Article  CAS  Google Scholar 

  24. Joshi, C. P. & Chiang, V. L. Conserved sequence motifs in plant S-adenosyl-L-methionine-dependent methyltransferases. Plant Mol. Biol. 37, 663–674 (1998).

    Article  CAS  Google Scholar 

  25. Pabo, C. O., Peisach, E. & Grant, R. A. Design and selection of novel Cys2His2 zinc finger proteins. Annu. Rev. Biochem. 70, 313–340 (2001).

    Article  CAS  Google Scholar 

  26. Kozaki, A., Hake, S. & Colasanti, J. The maize ID1 flowering time regulator is a zinc finger protein with novel DNA binding properties. Nucleic Acids Res. 32, 1710–1720 (2004).

    Article  CAS  Google Scholar 

  27. Ogasawara, H., Kaimi, R., Colasanti, J. & Kozaki, A. Activity of transcription factor JACKDAW is essential for SHR/SCR-dependent activation of SCARECROW and MAGPIE and is modulated by reciprocal interactions with MAGPIE, SCARECROW and SHORT ROOT. Plant Mol. Biol. 77, 489–499 (2011).

    Article  CAS  Google Scholar 

  28. Pavletich, N. P. & Pabo, C. O. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1Å. Science 252, 809–817 (1991).

    Article  CAS  Google Scholar 

  29. Hirsch, S. et al. GRAS proteins form a DNA binding complex to induce gene expression during nodulation signaling in Medicago truncatula. Plant Cell 21, 545–557 (2009).

    Article  CAS  Google Scholar 

  30. Li, S. et al. Crystal structure of the GRAS domain of SCARECROW-LIKE 7 in Oryza sativa. Plant Cell 28, 1025–1034 (2016).

    Article  CAS  Google Scholar 

  31. Hamiaux, C. et al. DAD2 is an α/β hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr. Biol. 22, 2032–2036 (2012).

    Article  CAS  Google Scholar 

  32. Kagiyama, M. et al. Structures of D14 and D14L in the strigolactone and karrikin signaling pathways. Genes Cells 18, 147–160 (2013).

    Article  CAS  Google Scholar 

  33. Yoshida, H. et al. DELLA protein functions as a transcriptional activator through the DNA binding of the INDETERMINATE DOMAIN family proteins. Proc. Natl Acad. Sci. USA 111, 7861–7866 (2014).

    Article  CAS  Google Scholar 

  34. Fukazawa, J. et al. DELLAs function as coactivators of GAI-ASSOCIATED FACTOR1 in regulation of gibberellin homeostasis and signaling in Arabidopsis. Plant Cell 26, 2920–2938 (2014).

    Article  CAS  Google Scholar 

  35. Doublié, S. Preparation of selenomethionyl proteins for phase determination. Methods Enzymol. 276, 523–530 (1997).

    Article  Google Scholar 

  36. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  37. Schneider, T. R. & Sheldrick, G. M. Substructure solution with SHELXD. Acta Crystallogr. D 58, 1772–1779 (2002).

    Article  Google Scholar 

  38. Vonrhein, C., Blanc, E., Roversi, P. & Bricogne, G. Automated structure solution with autoSHARP. Methods Mol. Biol. 364, 215–230 (2007).

    CAS  PubMed  Google Scholar 

  39. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    Article  Google Scholar 

  40. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  41. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Cryst. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  42. Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).

    Article  CAS  Google Scholar 

  43. Holm, L. & Park, J. Dalilite workbench for protein structure comparison. Bioinformatics 16, 566–567 (2000).

    Article  CAS  Google Scholar 

  44. Nagai, T. et al. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 20, 87–90 (2002).

    Article  CAS  Google Scholar 

  45. Shimura, H. et al. A strategy for screening an inhibitor of viral silencing suppressors, which attenuates symptom development of plant viruses. FEBS Lett. 582, 4047–4052 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Kurata for technical support in performing the MALDI-TOF MS analysis. We appreciate access to BL41XU and BL44XU beamlines at the SPring-8 synchrotron facility for the provision of synchrotron data collection facilities (proposal nos. 2013A6844, 2013B1288, 2013B6844, 2014A 1283 and 2014A6944). The cDNAs were provided by RIKEN BRC through the National Bio-Resource Project of the MEXT, Japan. This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas ‘Structural Cell Biology’ (to T.H.), a Grant-in-Aid for Scientific Research (C) (to Y.H.) from MEXT, Japan, the Core Research for Evolutionary Science and Technology (CREST), the Japan Science and Technology Agency (to Y.H.) and the National Institutes of Health, United States (R01 GM100051 to T.-p.S.).

Author information

Authors and Affiliations

Authors

Contributions

Y.H. and T.H. conceived and designed the project. Y.H. was responsible for construct design for the protein preparations. M.S., Y.H. and M.N. prepared the DNA constructs. Y.H., M.N. and T.S. performed protein biochemistry, crystallization and X-ray data collection. Y.H. solved and refined the structures. K.M. performed in vivo binding assay supervised by S.T., Y.H., M.N., T.S. and T.H. interpreted data. Y.H., T.-p.S. and T.H. wrote the manuscript.

Corresponding author

Correspondence to Toshio Hakoshima.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information 1–3, Supplementary Table 1, Supplementary Figures 1–12, Supplementary Figure Legends 1–12. (PDF 4184 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirano, Y., Nakagawa, M., Suyama, T. et al. Structure of the SHR–SCR heterodimer bound to the BIRD/IDD transcriptional factor JKD. Nature Plants 3, 17010 (2017). https://doi.org/10.1038/nplants.2017.10

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2017.10

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing