Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Recent demography drives changes in linked selection across the maize genome

Abstract

Genetic diversity is shaped by the interaction of drift and selection, but the details of this interaction are not well understood. The impact of genetic drift in a population is largely determined by its demographic history, typically summarized by its long-term effective population size (Ne). Rapidly changing population demographics complicate this relationship, however. To better understand how changing demography impacts selection, we used whole-genome sequencing data to investigate patterns of linked selection in domesticated and wild maize (teosinte). We produce the first whole-genome estimate of the demography of maize domestication, showing that maize was reduced to approximately 5% the population size of teosinte before it experienced rapid expansion post-domestication to population sizes much larger than its ancestor. Evaluation of patterns of nucleotide diversity in and near genes shows little evidence of selection on beneficial amino acid substitutions, and that the domestication bottleneck led to a decline in the efficiency of purifying selection in maize. Young alleles, however, show evidence of much stronger purifying selection in maize, reflecting the much larger effective size of present day populations. Our results demonstrate that recent demographic change—a hall-mark of many species including both humans and crops—can have immediate and wide-ranging impacts on diversity that conflict with expectations based on long-term Ne alone.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic diversity in maize and teosinte.
Figure 2: Estimated demographic history of maize and teosinte.
Figure 3: Relative diversity versus distance to nearest substitution in maize and teosinte.
Figure 4: Relative diversity versus distance to nearest gene in maize and teosinte.

Similar content being viewed by others

References

  1. Dobzhansky, T. & Pavlovsky, O. An experimental study of interaction between genetic drift and natural selection. Evolution 11, 311–319 (1957).

    Article  Google Scholar 

  2. Voight, B. F. et al. Interrogating multiple aspects of variation in a full resequencing data set to infer human population size changes. Proc. Natl Acad. Sci. USA 102, 18508–18513 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gutenkunst, R. N., Hernandez, R. D., Williamson, S. H. & Bustamante, C. D. Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS Genet. 5, e1000695 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Akey, J. M. Constructing genomic maps of positive selection in humans: where do we go from here? Genome Res. 19, 711–722 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Smith, J. M. & Haigh, J. The hitch-hiking effect of a favourable gene. Genet. Res. 23, 23–35 (1974).

    Article  CAS  PubMed  Google Scholar 

  6. Slotte, T. The impact of linked selection on plant genomic variation. Brief. Funct. Genomics 13, 268–275 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Charlesworth, B., Morgan, M. & Charlesworth, D. The effect of deleterious mutations on neutral molecular variation. Genetics 134, 1289–1303 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Sella, G., Petrov, D. A., Przeworski, M. & Andolfatto, P. Pervasive natural selection in the drosophila genome? PLoS Genet. 5, e1000495 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Elyashiv, E. et al. A genomic map of the effects of linked selection in drosophila. Preprint at arXiv:1408.5461 (2014).

  10. Andolfatto, P. Adaptive evolution of non-coding DNA in drosophila. Nature 437, 1149–1152 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Cutter, A. D. & Payseur, B. A. Genomic signatures of selection at linked sites: unifying the disparity among species. Nature Rev. Genet. 14, 262–274 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Corbett-Detig, R. B., Hartl, D. L. & Sackton, T. B. Natural selection constrains neutral diversity across a wide range of species. PLoS Biol. 13, e1002112 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Leffler, E. M. et al. Revisiting an old riddle: what determines genetic diversity levels within species. PLoS Biol. 10, e1001388 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Duchen, P., Živković, D., Hutter, S., Stephan, W. & Laurent, S. Demographic inference reveals African and European admixture in the North American Drosophila melanogaster population. Genetics 193, 291–301 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Reich, D. E. & Goldstein, D. B. Genetic evidence for a Paleolithic human population expansion in Africa. Proc. Natl Acad. Sci. USA 95, 8119–8123 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Meyer, R. S. & Purugganan, M. D. Evolution of crop species: genetics of domestication and diversification. Nature Rev. Genet. 14, 840–852 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Ellegren, H. Genome sequencing and population genomics in non-model organisms. Trends Ecol. Evol. 29, 51–63 (2014).

    Article  PubMed  Google Scholar 

  18. Matsuoka, Y. et al. A single domestication for maize shown by multilocus microsatellite genotyping. Proc. Natl Acad. Sci. USA 99, 6080–6084 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wright, S. I. et al. The effects of artificial selection on the maize genome. Science 308, 1310–1314 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Eyre-Walker, A., Gaut, R. L., Hilton, H., Feldman, D. L. & Gaut, B. S. Investigation of the bottleneck leading to the domestication of maize. Proc. Natl Acad. Sci. USA 95, 4441–4446 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tenaillon, M. I., U'Ren, J., Tenaillon, O. & Gaut, B. S. Selection versus demography: a multilocus investigation of the domestication process in maize. Mol. Biol. Evol. 21, 1214–1225 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Chia, J.-M. et al. Maize HapMap2 identifies extant variation from a genome in flux. Nature Genet. 44, 803–807 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Bukowski, R. et al. Construction of the third generation Zea mays haplotype map. Preprint at http://biorxiv.org/content/early/2015/09/16/026963 (2015).

  24. Hufford, M. B. et al. Comparative population genomics of maize domestication and improvement. Nature Genet. 44, 808–811 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Ewing, G. B. & Jensen, J. D. The consequences of not accounting for background selection in demographic inference. Mol. Ecol. 25, 135–141 (2016).

    Article  PubMed  Google Scholar 

  26. Hearne, S., Chen, C., Buckler, E. & Mitchell, S. Unimputed GBS Derived SNPs for Maize Landrace Accessions Represented in the Seed-Maize GWAS Panel (CIMMYT Dataverse Network, 2015); http://hdl.handle.net/11529/10034

  27. Keinan, A. & Clark, A. G. Recent explosive human population growth has resulted in an excess of rare genetic variants. Science 336, 740–743 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fu, Y.-X. & Li, W.-H. Statistical tests of neutrality of mutations. Genetics 133, 693–709 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Clark, R. M., Tavaré, S. & Doebley, J. Estimating a nucleotide substitution rate for maize from polymorphism at a major domestication locus. Mol. Biol. Evol. 22, 2304–2312 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Schiffels, S. & Durbin, R. Inferring human population size and separation history from multiple genome sequences. Nature Genet. 46, 919–925 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Wang, H., Studer, A. J., Zhao, Q., Meeley, R. & Doebley, J. F. Evidence that the origin of naked kernels during maize domestication was caused by a single amino acid substitution in tga1. Genetics 200, 965–974 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Enard, D., Messer, P. W. & Petrov, D. A. Genome-wide signals of positive selection in human evolution. Genome Res. 24, 885–895 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rodgers-Melnick, E. et al. Recombination in diverse maize is stable, predictable, and associated with genetic load. Proc. Natl Acad. Sci. USA 112, 3823–3828 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Davydov, E. V. et al. Identifying a high fraction of the human genome to be under selective constraint using GERP++. PLoS Comput. Biol. 6, e1001025 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Messer, P. W. & Petrov, D. A. Population genomics of rapid adaptation by soft selective sweeps. Trends Ecol. Evol. 28, 659–669 (2013).

    Article  PubMed  Google Scholar 

  36. Garud, N. R., Messer, P. W., Buzbas, E. O. & Petrov, D. A. Recent selective sweeps in North American Drosophila melanogaster show signatures of soft sweeps. PLoS Genet. 11, e1005004 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Piperno, D. R., Ranere, A. J., Holst, I., Iriarte, J. & Dickau, R. Starch grain and phytolith evidence for early ninth millennium B.P. maize from the Central Balsas River Valley, Mexico. Proc. Natl Acad. Sci. USA 106, 5019–5024 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Program, T. M. Development, Maintenance, and Seed Multiplication of Open-Pollinated Maize Varieties 2nd edn (CIMMYT, 1999).

    Google Scholar 

  39. Baden, W. W. & Beekman, C. S. Culture and agriculture: a comment on Sissel Schroeder, maize productivity in the eastern woodlands and great plains of North America. Am. Antiq. 66, 505–515 (2001).

    Article  Google Scholar 

  40. Studer, A., Zhao, Q., Ross-Ibarra, J. & Doebley, J. Identification of a functional transposon insertion in the maize domestication gene tb1. Nature Genet. 43, 1160–1163 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Wills, D. M. et al. From many, one: genetic control of prolificacy during maize domestication. PLoS Genet. 9, e1003604 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Takuno, S. et al. Independent molecular basis of convergent highland adaptation in maize. Genetics 200, 1297–1312 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  43. van Heerwaarden, J., Hufford, M. B. & Ross-Ibarra, J. Historical genomics of North American maize. Proc. Natl Acad. Sci. USA 109, 12420–12425 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Beissinger, T. M. et al. A genome-wide scan for evidence of selection in a maize population under long-term artificial selection for ear number. Genetics 196, 829–840 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Eyre-Walker, A. & Keightley, P. D. The distribution of fitness effects of new mutations. Nature Rev. Genet. 8, 610–618 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Wallace, J., Larsson, S. & Buckler, E. Entering the second century of maize quantitative genetics. Heredity 112, 30–38 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Weber, A. L. et al. The genetic architecture of complex traits in teosinte (Zea mays ssp. parviglumis): new evidence from association mapping. Genetics 180, 1221–1232 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pyhäjärvi, T., Hufford, M. B., Mezmouk, S. & Ross-Ibarra, J. Complex patterns of local adaptation in teosinte. Genome Biol. Evol. 5, 1594–1609 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sattath, S., Elyashiv, E., Kolodny, O., Rinott, Y. & Sella, G. Pervasive adaptive protein evolution apparent in diversity patterns around amino acid substitutions in Drosophila simulans. PLoS Genet. 7, e1001302 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Williamson, R. et al. Evidence for widespread positive and negative selection in coding and conserved noncoding regions of Capsella grandiflora. PLoS Genet. 10, e1004622 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hernandez, R. D. et al. Classic selective sweeps were rare in recent human evolution. Science 331, 920–924 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ross-Ibarra, J., Tenaillon, M. & Gaut, B. S. Historical divergence and gene flow in the genus Zea. Genetics 181, 1399–1413 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Eyre-Walker, A. & Keightley, P. D. Estimating the rate of adaptive molecular evolution in the presence of slightly deleterious mutations and population size change. Mol. Biol. Evol. 26, 2097–2108 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Mao, H. et al. A transposable element in a nac gene is associated with drought tolerance in maize seedlings. Nature Commun. 6, 8326 (2015).

    Article  CAS  Google Scholar 

  55. Yang, Q. et al. CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize. Proc. Natl Acad. Sci. USA 110, 16969–16974 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fraser, H. B. Gene expression drives local adaptation in humans. Genome Res. 23, 1089–1096 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hancock, A. M. et al. Adaptation to climate across the Arabidopsis thaliana genome. Science 334, 83–86 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Halligan, D. L. et al. Contributions of protein-coding and regulatory change to adaptive molecular evolution in murid rodents. PLoS Genet. 9, e1003995 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kimura, M. The Neutral Theory of Molecular Evolution (Cambridge Univ. Press, 1984).

    Google Scholar 

  60. Günther, T. & Schmid, K. J. Deleterious amino acid polymorphisms in Arabidopsis thaliana and rice. Theor. Appl. Genet. 121, 157–168 (2010).

    Article  PubMed  Google Scholar 

  61. Renaut, S. & Rieseberg, L. H. The accumulation of deleterious mutations as a consequence of domestication and improvement in sunflowers and other Compositae crops. Mol. Biol. Evol. 32, 2273–2283 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Coventry, A. et al. Deep resequencing reveals excess rare recent variants consistent with explosive population growth. Nature Commun. 1, 131 (2010).

    Article  Google Scholar 

  63. Mezmouk, S. & Ross-Ibarra, J. The pattern and distribution of deleterious mutations in maize. G3 (Bethesda) 4, 163–171 (2014).

    Article  Google Scholar 

  64. Eyre-Walker, A. Genetic architecture of a complex trait and its implications for fitness and genome-wide association studies. Proc. Natl Acad. Sci. USA 107, 1752–1756 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Do, R. et al. No evidence that selection has been less effective at removing deleterious mutations in Europeans than in Africans. Nature Genet. 47, 126–131 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Simons, Y. B., Turchin, M. C., Pritchard, J. K. & Sella, G. The deleterious mutation load is insensitive to recent population history. Nature Genet. 46, 220–224 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Lohmueller, K. E. The impact of population demography and selection on the genetic architecture of complex traits. PLoS Genet. 10, e1004379 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zeng, K. & Charlesworth, B. The effects of demography and linkage on the estimation of selection and mutation parameters. Genetics 186, 1411–1424 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Popadin, K. Y., Nikolaev, S. I., Junier, T., Baranova, M. & Antonarakis, S. E. Purifying selection in mammalian mitochondrial protein-coding genes is highly effective and congruent with evolution of nuclear genes. Mol. Biol. Evol. 2, 347–355 (2013).

    Article  Google Scholar 

  70. Elyashiv, E. et al. Shifts in the intensity of purifying selection: an analysis of genome-wide polymorphism data from two closely related yeast species. Genome Res. 20, 1558–1573 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lemmon, Z. H., Bukowski, R., Sun, Q. & Doebley, J. F. The role of cis regulatory evolution in maize domestication. PLoS Genet. 10, e1004745 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Jombart, T. & Ahmed, I. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Schnable, P. S. et al. The b73 maize genome: complexity, diversity, and dynamics. Science 326, 1112–1115 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Glaubitz, J. C. et al. Tassel-GBS: a high capacity genotyping by sequencing analysis pipeline. PLoS ONE 9, e90346 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nature Protoc. 4, 1184–1191 (2009).

    Article  CAS  Google Scholar 

  77. Durinck, S. et al. BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics 21, 3439–3440 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2014); http://www.R-project.org/

  79. Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics 15, 356 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  80. McLaren, W. et al. Deriving the consequences of genomic variants with the nsemble API and SNP effect predictor. Bioinformatics 26, 2069–2070 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Thornton, K. R. A c++ template library for efficient forward-time population genetic simulation of large populations. Genetics 198, 157–166 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are indebted to G. Coop and S. Aeschbacher for their constructive input during this study. We thank R. Bukowski and Q. Sun for providing early-access data from maize HapMap3. Funding was provided by National Science Foundation Plant Genome Research Project 1238014, the US Department of Agriculture (USDA) Agricultural Research Service, and USDA Hatch project CA-D-PLS-2066-H.

Author information

Authors and Affiliations

Authors

Contributions

T.M.B. and J.R.I. devised this study. T.M.B., L.W., J.R.-I. and K.C. analysed the data. A.D. performed early-stage simulations. T.M.B., J.R.-I. and M.B.H. wrote the manuscript.

Corresponding authors

Correspondence to Timothy M. Beissinger or Jeffrey Ross-Ibarra.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figs 1–8 and Supplementary Tables 1 and 2. (PDF 680 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beissinger, T., Wang, L., Crosby, K. et al. Recent demography drives changes in linked selection across the maize genome. Nature Plants 2, 16084 (2016). https://doi.org/10.1038/nplants.2016.84

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2016.84

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research