Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hydraulic basis for the evolution of photosynthetic productivity

Abstract

Clarifying the evolution and mechanisms for photosynthetic productivity is a key to both improving crops and understanding plant evolution and habitat distributions. Current theory recognizes a role for the hydraulics of water transport as a potential determinant of photosynthetic productivity based on comparative data across disparate species. However, there has never been rigorous support for the maintenance of this relationship during an evolutionary radiation. We tested this theory for 30 species of Viburnum, diverse in leaf shape and photosynthetic anatomy, grown in a common garden. We found strong support for a fundamental requirement for leaf hydraulic capacity (Kleaf) in determining photosynthetic capacity (Amax), as these traits diversified across this lineage in tight coordination, with their proportionality modulated by the climate experienced in the species' range. Variation in Kleaf arose from differences in venation architecture that influenced xylem and especially outside-xylem flow pathways. These findings substantiate an evolutionary basis for the coordination of hydraulic and photosynthetic physiology across species, and their co-dependence on climate, establishing a fundamental role for water transport in the evolution of the photosynthetic rate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Description of the hydraulic theory as a driver of leaf gas exchange.
Figure 2: Estimated ancestral states for Kleaf and Amax showing their co-evolution across the phylogenetic tree for Viburnum species.
Figure 3: Testing hydraulic theory in an evolutionary context across Viburnum species.
Figure 4: Drivers of leaf hydraulic conductance for Viburnum species.
Figure 5: Coordination of hydraulics and gas exchange with leaf venation.
Figure 6: Diversity of leaf size, shape and venation architecture in the model genus Viburnum.

Similar content being viewed by others

References

  1. Sperry, J. S. Evolution of water transport and xylem structure. Int. J. Plant Sci. 164, S115–S127 (2003).

    Article  Google Scholar 

  2. Cowan, I. R. & Farquhar, G. D. Stomatal function in relation to leaf metabolism and environment. 31, 471–505 (1977).

  3. Givnish, T. J. & Vermeij, G. J. Sizes and shapes of liane leaves. Am. Nat. 110, 743–778 (1976).

    Article  Google Scholar 

  4. Givnish, T. J. (ed.) On the Economy of Plant Form and Function (Cambridge Univ. Press, 1986).

    Google Scholar 

  5. Brodribb, T. J. & Feild, T. S. Stem hydraulic supply is linked to leaf photosynthetic capacity: evidence from New Caledonian and Tasmanian rainforests. Plant Cell Environ. 23, 1381–1388 (2000).

    Article  Google Scholar 

  6. Brodribb, T. J., Holbrook, N. M., Zwieniecki, M. A. & Palma, B. Leaf hydraulic capacity in ferns, conifers and angiosperms: impacts on photosynthetic maxima. New Phytol. 165, 839–846 (2005).

    Article  Google Scholar 

  7. Brodribb, T. J., Feild, T. S. & Jordan, G. J. Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiol. 144, 1890–1898 (2007).

    Article  CAS  Google Scholar 

  8. Feild, T. S. & Balun, L. Xylem hydraulic and photosynthetic function of Gnetum (Gnetales) species from Papua New Guinea. New Phytol. 177, 665–675 (2008).

    Article  CAS  Google Scholar 

  9. Sack, L. & Frole, K. Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees. Ecology 87, 483–491 (2006).

    Article  Google Scholar 

  10. Fiorin, L., Brodribb, T. J. & Anfodillo, T. Transport efficiency through uniformity: organization of veins and stomata in angiosperm leaves. New Phytol. 209, 216–227 (2016).

    Article  Google Scholar 

  11. Givnish, T. J., Montgomery, R. A. & Goldstein, G. Adaptive radiation of photosynthetic physiology in the Hawaiian lobeliads: light regimes, static light responses, and whole-plant compensation points. Am. J. Bot. 91, 228–246 (2004).

    Article  CAS  Google Scholar 

  12. Pittermann, J. et al. The relationships between xylem safety and hydraulic efficiency in the cupressaceae: the evolution of pit membrane form and function. Plant Physiol. 153, 1919–1931 (2010).

    Article  CAS  Google Scholar 

  13. Gleason, S. M. et al. Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world's woody plant species. New Phytol. 209, 123–136 (2016).

    Article  CAS  Google Scholar 

  14. Mason, C. M. & Donovan, L. A. Evolution of the leaf economics spectrum in herbs: evidence from environmental divergences in leaf physiology across Helianthus (Asteraceae). Evolution 69, 2705–2720 (2015).

    Article  Google Scholar 

  15. Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).

    Article  CAS  Google Scholar 

  16. Edwards, E. J., Chatelet, D. S., Sack, L. & Donoghue, M. J. Leaf life span and the leaf economic spectrum in the context of whole plant architecture. J. Ecol. 102, 328–336 (2014).

    Article  Google Scholar 

  17. Edwards, E. J. Correlated evolution of stem and leaf hydraulic traits in Pereskia (Cactaceae). New Phytol. 172, 479–489 (2006).

    Article  Google Scholar 

  18. Liu, H. et al. Strong phylogenetic signals and phylogenetic niche conservatism in ecophysiological traits across divergent lineages of Magnoliaceae. Sci. Rep. 5, 12246 (2015).

    Article  CAS  Google Scholar 

  19. Sack, L., Cowan, P. D., Jaikumar, N. & Holbrook, N. M. The ‘hydrology’ of leaves: co-ordination of structure and function in temperate woody species. Plant Cell Environ. 26, 1343–1356 (2003).

    Article  Google Scholar 

  20. Brodribb, T. J. & Jordan, G. J. Internal coordination between hydraulics and stomatal control in leaves. Plant Cell Environ. 31, 1557–1564 (2008).

    Article  Google Scholar 

  21. Scoffoni, C. et al. Light-induced plasticity in leaf hydraulics, venation, anatomy and gas exchange in ecologically diverse Hawaiian lobeliads. New Phytol. 207, 43–58 (2015).

    Article  CAS  Google Scholar 

  22. Damour, G., Simonneau, T., Cochard, H. & Urban, L. An overview of models of stomatal conductance at the leaf level. Plant Cell Environ. 33, 1419–1438 (2010).

    PubMed  Google Scholar 

  23. Wong, S. C., Cowan, I. R. & Farquhar, G. D. Stomatal conductance correlates with photosynthetic capacity. Nature 282, 424–426 (1979).

    Article  Google Scholar 

  24. Schmerler, S. B. et al. Evolution of leaf form correlates with tropical-temperate transitions in Viburnum (Adoxaceae). Proc. R. Soc. B 279, 3905–3913 (2012).

    Article  Google Scholar 

  25. Chatelet, D. S., Clement, W. L., Sack, L., Donoghue, M. J. & Edwards, E. J. The evolution of photosynthetic anatomy in Viburnum (Adoxaceae). Int. J. Plant Sci. 174, 1277–1291 (2013).

    Article  CAS  Google Scholar 

  26. Clement, W. L., Arakaki, M., Sweeney, P. W., Edwards, E. J. & Donoghue, M. J. A chloroplast tree for Viburnum (Adoxaceae) and its implications for phylogenetic classification and character evolution. Am. J. Bot. 101, 1029–1049 (2014).

    Article  Google Scholar 

  27. Spriggs, E. L. et al. Temperate radiations and dying embers of a tropical past: the diversification of Viburnum. New Phytol. 207, 340–354 (2015).

    Article  Google Scholar 

  28. Sack, L., Streeter, C. M. & Holbrook, N. M. Hydraulic analysis of water flow through leaves of sugar maple and red oak. Plant Physiol. 134, 1824–1833 (2004).

    Article  CAS  Google Scholar 

  29. Sack, L., Tyree, M. T. & Holbrook, N. M. Leaf hydraulic architecture correlates with regeneration irradiance in tropical rainforest trees. New Phytol. 167, 403–413 (2005).

    Article  Google Scholar 

  30. Cochard, H., Nardini, A. & Coll, L. Hydraulic architecture of leaf blades: where is the main resistance? Plant Cell Environ. 27, 1257–1267 (2004).

    Article  Google Scholar 

  31. Sommerville, K. E., Sack, L. & Ball, M. C. Hydraulic conductance of Acacia phyllodes (foliage) is driven by primary nerve (vein) conductance and density. Plant Cell Environ. 35, 158–168 (2012).

    Article  Google Scholar 

  32. Sack, L. & Scoffoni, C. Leaf venation: structure, function, development, evolution, ecology and applications in past, present and future. New Phytol. 198, 938–1000 (2013).

    Article  Google Scholar 

  33. Buckley, T. N., John, G. P., Scoffoni, C. & Sack, L. How does leaf anatomy influence water transport outside the xylem? Plant Physiol. 168, 1616–1635 (2015).

    Article  CAS  Google Scholar 

  34. Sack, L. et al. Developmentally-based scaling of leaf venation architecture explains global ecological patterns. Nature Commun. 3, 837 (2012).

    Article  Google Scholar 

  35. Field, C. & Mooney, H. A. in On the Economy of Plant Form and Function (ed. Givnish, T. J.) 25–56 (Cambridge Univ. Press, 1986).

    Google Scholar 

  36. Osborne, C. P. & Sack, L. Evolution of C-4 plants: a new hypothesis for an interaction of CO2 and water relations mediated by plant hydraulics. Phil. Trans. R. Soc. B 367, 583–600 (2012).

    Article  CAS  Google Scholar 

  37. Cornwell, W. K., Bhaskar, R., Sack, L., Cordell, S. & Lunch, C. K. Adjustment of structure and function of Hawaiian Metrosideros polymorpha at high vs. low precipitation. Funct. Ecol. 21, 1063–1071 (2007).

    Article  Google Scholar 

  38. Sack, L. & Holbrook, N. M. Leaf hydraulics. Annu. Rev. Plant Biol. 57, 361–381 (2006).

    Article  CAS  Google Scholar 

  39. Donoghue, M. J. Key innovations, convergence, and success: macroevolutionary lessons from plant phylogeny. Paleobiology 31, 77–93 (2005).

    Article  Google Scholar 

  40. Edwards, E. J. & Donoghue, M. J. Is it easy to move and easy to evolve? Evolutionary accessibility and adaptation. J. Exp. Bot. 64, 4047–4052 (2013).

    Article  CAS  Google Scholar 

  41. Thomas, S. C. & Bazzaz, F. A. Asymptotic height as a predictor of photosynthetic characteristics in Malaysian rain forest trees. Ecology 80, 1607–1622 (1999).

    Article  Google Scholar 

  42. Noblin, X. et al. Optimal vein density in artificial and real leaves. Proc. Natl. Acad. Sci. USA 105, 9140–9144 (2008).

    Article  CAS  Google Scholar 

  43. Flexas, J., Scoffoni, C., Gago, J. & Sack, L. Leaf mesophyll conductance and leaf hydraulic conductance: an introduction to their measurement and coordination. J. Exp. Bot. 64, 3965–3981 (2013).

    Article  CAS  Google Scholar 

  44. Buckley, T. N. The contributions of apoplastic, symplastic and gas phase pathways for water transport outside the bundle sheath in leaves. Plant Cell Environ. 38, 7–22 (2015).

    Article  Google Scholar 

  45. Kim, Y. X. & Steudle, E. Light and turgor affect the water permeability (aquaporins) of parenchyma cells in the midrib of leaves of Zea mays. J. Exp. Bot. 58, 4119–4129 (2007).

    Article  CAS  Google Scholar 

  46. Feild, T. S. & Brodribb, T. J. Hydraulic tuning of vein cell microstructure in the evolution of angiosperm venation networks. New Phytol. 199, 720–726 (2013).

    Article  CAS  Google Scholar 

  47. Nardini, A. & Salleo, S. Effects of the experimental blockage of the major veins on hydraulics and gas exchange of Prunus laurocerasus L. leaves. J. Exp. Bot. 54, 1213–1219 (2003).

    Article  CAS  Google Scholar 

  48. Zwieniecki, M. A., Melcher, P. J., Boyce, C. K., Sack, L. & Holbrook, N. M. Hydraulic architecture of leaf venation in Laurus nobilis L. Plant Cell Environ. 25, 1445–1450 (2002).

    Article  Google Scholar 

  49. Brodribb, T. J. & Feild, T. S. Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification. Ecol. Lett. 13, 175–183 (2010).

    Article  Google Scholar 

  50. Brodribb, T. J., Holloway-Phillips, M.-M. & Bramley, H. Crop Physiology: Applications for Genetic Improvement and Agronomy 2nd edn (Oxford Academy Press, 2015).

    Google Scholar 

  51. Sack, L. et al. Plant water transport as a central hub from plant to ecosystem function: meeting report for “Emerging Frontiers in Plant Hydraulics” (Washington, DC, 2015). Plant Cell Environ. (in the press).

  52. Sack, L. & Scoffoni, C. Measurement of leaf hydraulic conductance and stomatal conductance and their responses to irradiance and dehydration using the evaporative flux methods (EFM). J. Visual. Exp. e4179, 1–7 (2012).

    Google Scholar 

  53. Brodribb, T. J. & Cochard, H. Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant Physiol. 149, 575–584 (2009).

    Article  CAS  Google Scholar 

  54. Sack, L., Bartlett, M., Creese, C., Guyot, G. & Scoffoni, C. Constructing and Operating a Hydraulics Flow Meter (Prometheus Wiki, 2011); http://prometheuswiki.publish.csiro.au/tiki-index.php?page=Constructing+and+operatinga+hydraulics+flow+meter

  55. Abramoff, M. D., Magalhaes, P. J. & Ram, S. J. Image processing with ImageJ. Biophoton. Int. 11 36–42 (2004).

    Google Scholar 

  56. Weast, R. C. Handbook of Chemistry and Physics 54th edn (CRC Press, 1974).

    Google Scholar 

  57. Yang, S. D. & Tyree, M. T. Hydraulic resistance in Acer saccharum shoots and its influence on leaf water potential and transpiration. Tree Physiol. 12, 231–242 (1993).

    Article  CAS  Google Scholar 

  58. Sack, L., Melcher, P. J., Zwieniecki, M. A. & Holbrook, N. M. The hydraulic conductance of the angiosperm leaf lamina: a comparison of three measurement methods. J. Exp. Bot. 53, 2177–2184 (2002).

    Article  CAS  Google Scholar 

  59. Brodribb, T. J. & Holbrook, N. M. Stomatal closure during leaf dehydration, correlation with other leaf physiological traits. Plant Physiol. 132, 2166–2173 (2003).

    Article  CAS  Google Scholar 

  60. Scoffoni, C., McKown, A. D., Rawls, M. & Sack, L. Dynamics of leaf hydraulic conductance with water status: quantification and analysis of species differences under steady-state. J. Exp. Bot. 63, 643–658 (2012).

    Article  CAS  Google Scholar 

  61. Scoffoni, C., Pou, A., Aasamaa, K. & Sack, L. The rapid light response of leaf hydraulic conductance: new evidence from two experimental methods. Plant Cell Environ. 31, 1803–1812 (2008).

    Article  Google Scholar 

  62. Brodribb, T. J. & Holbrook, N. M. Changes in leaf hydraulic conductance during leaf shedding in seasonally dry tropical forest. New Phytol. 158, 295–303 (2003).

    Article  Google Scholar 

  63. Nardini, A., Pedà, G. & La Rocca, N. Trade-offs between leaf hydraulic capacity and drought vulnerability: morpho-anatomical bases, carbon costs and ecological consequences. New Phytol. 196, 788–798 (2012).

    Article  Google Scholar 

  64. Nardini, A., Gortan, E. & Salleo, S. Hydraulic efficiency of the leaf venation system in sun- and shade-adapted species. Funct. Plant Biol. 32, 953–961 (2005).

    Article  Google Scholar 

  65. Nardini, A., Raimondo, F., Lo Gullo, M. A. & Salleo, S. Leafminers help us understand leaf hydraulic design. Plant Cell Environ. 33, 1091–1100 (2010)

    PubMed  Google Scholar 

  66. Scoffoni, C., Sack, L. & contributors Quantifying Leaf Vein Traits (Prometheus Wiki, 2013); http://prometheuswiki.publish.csiro.au/tiki-index.php?page=Quantifying+leaf+vein+traits

  67. Lewis, A. M. & Boose, E. R. Estimating volume flow-rates through xylem conduits. Am. J. Bot. 82, 1112–1116 (1995).

    Article  Google Scholar 

  68. Sokal, R. R. & Rohlf, F. J. Biometry: the Principles and Practice of Statistics in Biological Research 3rd edn (W. H. Freeman and Company, 1995).

    Google Scholar 

  69. Pagel, M. Detecting correlated evolution on phylogenies - a general method for the comparative analysis of discrete characters. Proc. R. Soc. B 255, 37–45 (1994).

    Article  Google Scholar 

  70. Pagel, M. The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Systematic Biology 48, 612–622 (1999).

    Article  Google Scholar 

  71. Butler, M. A. & King, A. A. Phylogenetic comparative analysis: a modeling approach for adaptive evolution. Am. Nat. 164, 683–695 (2004).

    Article  Google Scholar 

  72. Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

    Article  CAS  Google Scholar 

  73. Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E. & Challenger, W. GEIGER: investigating evolutionary radiations. Bioinformatics 24, 129–131 (2008).

    Article  CAS  Google Scholar 

  74. King, A. A. & Butler, M. A. OUCH: Ornstein-Uhlenbeck Models for Phylogenetic Comparative Hypotheses (R Package) (CRAN, 2009); http://ouch.r-forge.r-project.org

  75. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

    Google Scholar 

  76. Edwards, E. J., De Vos, J. & Donoghue, M. J. Brief Communications Arising: doubtful pathways to cold tolerance in plants. Nature 521, E6–E7 (2015).

    Article  Google Scholar 

  77. Humans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article  Google Scholar 

  78. Humans, R. J. RASTER: Geographic Data Analysis and Modeling. R Package Version 2.3-33 (CRAN, 2015); http://CRAN.R-project.org/package=raster

Download references

Acknowledgements

We thank the staff at the Arnold Arboretum of Harvard University, Erin Riordan for help with climate data, and M. Alfaro, M. Bartlett, M. Caringella, J. Chang and G. John for helpful comments on the manuscript. We would like to thank T. Givnish and two anonymous reviewers for their constructive comments. This work was funded by the Department of Ecology and Evolutionary Biology at UCLA, a UCLA Dissertation Year Fellowship and NSF grants IOS-0842771 to L.S., IOS-0843231 to E.J.E., and IOS-0842800 to M.J.D.

Author information

Authors and Affiliations

Authors

Contributions

C.S., D.S.C., M.J.D., E.J.E. and L.S. designed experiments. C.S., D.S.C., J.P.K. and M.R. performed experiments. C.S. and D.S.C. analysed data. C.S. and L.S. wrote the paper with inputs from all authors.

Corresponding author

Correspondence to Christine Scoffoni.

Ethics declarations

Competing interests

The authors declare no competing financial interests

Supplementary information

Supplementary Information

Appendices 1 and 2, Supplementary Figs 1 and 2, Supplementary Table 1 and Supplementary References. (PDF 1116 kb)

Supplementary Data Tables

Supplementary Tables 2-4 (XLSX 60 kb)

Supplementary Table 5 (XLSX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scoffoni, C., Chatelet, D., Pasquet-kok, J. et al. Hydraulic basis for the evolution of photosynthetic productivity. Nature Plants 2, 16072 (2016). https://doi.org/10.1038/nplants.2016.72

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2016.72

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing