Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Unique cell-type-specific patterns of DNA methylation in the root meristem

Abstract

DNA methylation is an epigenetic modification that differs between plant organs and tissues, but the extent of variation between cell types is not known. Here, we report single-base-resolution whole-genome DNA methylomes, mRNA transcriptomes and small RNA transcriptomes for six cell populations covering the major cell types of the Arabidopsis root meristem. We identify widespread cell-type-specific patterns of DNA methylation, especially in the CHH sequence context, where H is A, C or T. The genome of the columella root cap is the most highly methylated Arabidopsis cell characterized so far. It is hypermethylated within transposable elements (TEs), accompanied by increased abundance of transcripts encoding RNA-directed DNA methylation (RdDM) pathway components and 24-nt small RNAs (smRNAs). The absence of the nucleosome remodeller DECREASED DNA METHYLATION 1 (DDM1), required for maintenance of DNA methylation, and low abundance of histone transcripts involved in heterochromatin formation suggests that a loss of heterochromatin may occur in the columella, thus allowing access of RdDM factors to the whole genome, and producing an excess of 24-nt smRNAs in this tissue. Together, these maps provide new insights into the epigenomic diversity that exists between distinct plant somatic cell types.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cell-type-specific patterns of DNA methylation in the root meristem.
Figure 2: Differentially methylated regions (DMRs) among six root cell types.
Figure 3: DNA methylation in genes and TEs.
Figure 4: Transcript levels of DNA-methylation-related genes.
Figure 5: Loss of DDM1 in the columella.

Similar content being viewed by others

References

  1. Law, J. A. & Jacobsen, S. E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nature Rev. Genet. 11, 204–220 (2010).

    Article  CAS  Google Scholar 

  2. Matzke, M. A. & Mosher, R. A. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nature Rev. Genet. 15, 394–408 (2014).

    Article  CAS  Google Scholar 

  3. Zemach, A. et al. The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 153, 193–205 (2013).

    Article  CAS  Google Scholar 

  4. Stroud, H. et al. Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. Nature Struct. Mol. Biol. 21, 64–72 (2014).

    Article  CAS  Google Scholar 

  5. Cubas, P., Vincent, C. & Coen, E. An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401, 157–161 (1999).

    Article  CAS  Google Scholar 

  6. Secco, D. et al. Stress induced gene expression drives transient DNA methylation changes at adjacent repetitive elements. eLife 4, e09343 (2015).

    Article  Google Scholar 

  7. Dowen, R. H. et al. Widespread dynamic DNA methylation in response to biotic stress. Proc. Natl Acad. Sci. USA 109, E2183–E2191 (2012).

    Article  CAS  Google Scholar 

  8. Pignatta, D. et al. Natural epigenetic polymorphisms lead to intraspecific variation in Arabidopsis gene imprinting. eLife 3, e03198 (2014).

    Article  Google Scholar 

  9. Slotkin, R. K. et al. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136, 461–472 (2009).

    Article  CAS  Google Scholar 

  10. Calarco, J. P. et al. Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell 151, 194–205 (2012).

    Article  CAS  Google Scholar 

  11. Ibarra, C. A. et al. Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes. Science 337, 1360–1364 (2012).

    Article  CAS  Google Scholar 

  12. Mirouze, M. et al. Selective epigenetic control of retrotransposition in Arabidopsis. Nature 461, 427–430 (2009).

    Article  CAS  Google Scholar 

  13. Tsukahara, S. et al. Bursts of retrotransposition reproduced in Arabidopsis. Nature 461, 423–426 (2009).

    Article  CAS  Google Scholar 

  14. Baubec, T., Finke, A., Mittelsten Scheid, O. & Pecinka, A. Meristem-specific expression of epigenetic regulators safeguards transposon silencing in Arabidopsis. EMBO Rep. 15, 446–452 (2014).

    Article  CAS  Google Scholar 

  15. Seymour, D. K., Koenig, D., Hagmann, J., Becker, C. & Weigel, D. Evolution of DNA methylation patterns in the Brassicaceae is driven by differences in genome organization. PLoS Genet. 10, e1004785 (2014).

    Article  Google Scholar 

  16. Widman, N., Feng, S., Jacobsen, S. E. & Pellegrini, M. Epigenetic differences between shoots and roots in Arabidopsis reveals tissue-specific regulation. Epigenetics 9, 236–242 (2014).

    Article  CAS  Google Scholar 

  17. Schmitz, R. J. et al. Transgenerational epigenetic instability is a source of novel methylation variants. Science 334, 369–373 (2011).

    Article  CAS  Google Scholar 

  18. Becker, C. et al. Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature 480, 245–249 (2011).

    Article  CAS  Google Scholar 

  19. Schmitz, R. J. et al. Patterns of population epigenomic diversity. Nature 495, 193–198 (2013).

    Article  CAS  Google Scholar 

  20. Stroud, H., Greenberg, M. V., Feng, S., Bernatavichute, Y. V. & Jacobsen, S. E. Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell 152, 352–364 (2013).

    Article  CAS  Google Scholar 

  21. Nuthikattu, S. et al. The initiation of epigenetic silencing of active transposable elements is triggered by RDR6 and 21–22 nucleotide small interfering RNAs. Plant Physiol. 162, 116–131 (2013).

    Article  CAS  Google Scholar 

  22. Zhang, X. et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126, 1189–1201 (2006).

    Article  CAS  Google Scholar 

  23. Zilberman, D., Gehring, M., Tran, R. K., Ballinger, T. & Henikoff, S. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nature Genet. 39, 61–69 (2007).

    Article  CAS  Google Scholar 

  24. Tran, R. K. et al. DNA methylation profiling identifies CG methylation clusters in Arabidopsis genes. Curr. Biol. 15, 154–159 (2005).

    Article  CAS  Google Scholar 

  25. Xie, Z. et al. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol. 2, E104 (2004).

    Article  Google Scholar 

  26. Onodera, Y. et al. Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell 120, 613–622 (2005).

    Article  CAS  Google Scholar 

  27. Henderson, I. R. et al. Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nature Genet. 38, 721–725 (2006).

    Article  CAS  Google Scholar 

  28. Smith, L. M. et al. An SNF2 protein associated with nuclear RNA silencing and the spread of a silencing signal between cells in Arabidopsis. Plant Cell 19, 1507–1521 (2007).

    Article  CAS  Google Scholar 

  29. Yelagandula, R. et al. The histone variant H2A.W defines heterochromatin and promotes chromatin condensation in Arabidopsis. Cell 158, 98–109 (2014).

    Article  CAS  Google Scholar 

  30. Hsieh, T. F. et al. Genome-wide demethylation of Arabidopsis endosperm. Science 324, 1451–1454 (2009).

    Article  CAS  Google Scholar 

  31. Tsugeki, R. & Fedoroff, N. V. Genetic ablation of root cap cells in Arabidopsis. Proc. Natl Acad. Sci. USA 96, 12941–12946 (1999).

    Article  CAS  Google Scholar 

  32. Swarup, R. et al. Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal. Nature Cell Biol. 7, 1057–1065 (2005).

    Article  CAS  Google Scholar 

  33. Schoft, V. K. et al. Induction of RNA-directed DNA methylation upon decondensation of constitutive heterochromatin. EMBO Rep. 10, 1015–1021 (2009).

    Article  CAS  Google Scholar 

  34. Dolan, L. et al. Cellular organisation of the Arabidopsis thaliana root. Development 119, 71–84 (1993).

    CAS  PubMed  Google Scholar 

  35. Iyer-Pascuzzi, A. S. & Benfey, P. N. Fluorescence-activated cell sorting in plant developmental biology. Methods Mol. Biol. 655, 313–319 (2010).

    Article  CAS  Google Scholar 

  36. Nawy, T. et al. Transcriptional profile of the Arabidopsis root quiescent center. Plant Cell 17, 1908–1925 (2005).

    Article  CAS  Google Scholar 

  37. Collins, C., Dewitte, W. & Murray, J. A. D-type cyclins control cell division and developmental rate during Arabidopsis seed development. J Exp. Bot. 63, 3571–3586 (2012).

    Article  CAS  Google Scholar 

  38. Mahonen, A. P. et al. A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root. Genes Dev 14, 2938–2943 (2000).

    Article  CAS  Google Scholar 

  39. Birnbaum, K. et al. A gene expression map of the Arabidopsis root. Science 302, 1956–1960 (2003).

    Article  CAS  Google Scholar 

  40. Lee, J. Y. et al. Transcriptional and posttranscriptional regulation of transcription factor expression in Arabidopsis roots. Proc. Natl Acad. Sci. USA 103, 6055–6060 (2006).

    Article  CAS  Google Scholar 

  41. Lee, M. M. & Schiefelbein, J. WEREWOLF, a MYB-related protein in Arabidopsis, is a position-dependent regulator of epidermal cell patterning. Cell 99, 473–483 (1999).

    Article  CAS  Google Scholar 

  42. Lister, R. et al. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133, 523–536 (2008).

    Article  CAS  Google Scholar 

  43. Lister, R. et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471, 68–73 (2011).

    Article  CAS  Google Scholar 

  44. Urich, M. A., Nery, J. R., Lister, R., Schmitz, R. J. & Ecker, J. R. MethylC-seq library preparation for base-resolution whole-genome bisulfite sequencing. Nature Protoc. 10, 475–483 (2015).

    Article  CAS  Google Scholar 

  45. Schultz, M. D. et al. Human body epigenome maps reveal noncanonical DNA methylation variation. Nature 523, 212–216 (2015).

    Article  CAS  Google Scholar 

  46. Schultz, M. D., Schmitz, R. J. & Ecker, J. R. ‘Leveling’ the playing field for analyses of single-base resolution DNA methylomes. Trends Genet. 28, 583–585 (2012).

    Article  CAS  Google Scholar 

  47. Breakfield, N. W. et al. High-resolution experimental and computational profiling of tissue-specific known and novel miRNAs in Arabidopsis. Genome Res. 22, 163–176 (2012).

    Article  CAS  Google Scholar 

  48. Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315–322 (2009).

    Article  CAS  Google Scholar 

  49. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

    Article  Google Scholar 

  50. Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protoc. 7, 562–578 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Slotkin (Ohio State Univ., USA) and J.A.H. Murray (Univ. Cardiff, UK) for kindly providing DDM1–GFP seeds and ProCYCD5–GFP seeds, respectively. T.K. was supported by the Japan Society for the Promotion of Sciences Research Abroad Fellowship. T.S was supported by the Jean Rogerson Postgraduate Scholarship. This research was supported by grants from the National Science Foundation (MCB-1344299 to J.R.E and IOS-1021619 to P.N.B.), by the National Institutes of Health (GM R01-043778 to P.N.B.) and by the Gordon and Betty Moore Foundation (GBMF3034 to J.R.E and GBMF3405 to P.N.B.). R.L. was supported by the Australian Research Council (FT120100862). R.J.S. was supported by the National Institutes of Health (R00GM100000). J.R.E. and P.N.B. are investigators of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

P.N.B., J.R.E. and R.L. designed and supervised research. N.B., X.H. and M.V. collected cells. T.K., R.L., J.R.N. and M.A.U. conducted MethylC-seq experiments. R.L., J.R.N. and M.A.U. conducted RNA-seq experiments. T.K. and R.L. performed sequencing data processing. T.K., R.L., R.J.S. and T.S. performed statistical and bioinformatic analyses. R.J.S. performed imaging analyses. P.N.B., J.R.E., T.K., R.L. and T.S. prepared the manuscript.

Corresponding authors

Correspondence to Ryan Lister, Philip N. Benfey or Joseph R. Ecker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawakatsu, T., Stuart, T., Valdes, M. et al. Unique cell-type-specific patterns of DNA methylation in the root meristem. Nature Plants 2, 16058 (2016). https://doi.org/10.1038/nplants.2016.58

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2016.58

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing