Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The nature of self-regulation in photosynthetic light-harvesting antenna

Abstract

The photosynthetic apparatus of green plants is well known for its extremely high efficiency that allows them to operate under dim light conditions. On the other hand, intense sunlight may result in overexcitation of the light-harvesting antenna and the formation of reactive compounds capable of ‘burning out’ the whole photosynthetic unit. Non-photochemical quenching is a self-regulatory mechanism utilized by green plants on a molecular level that allows them to safely dissipate the detrimental excess excitation energy as heat. Although it is believed to take place in the plant's major light-harvesting complexes (LHC) II, there is still no consensus regarding its molecular nature. To get more insight into its physical origin, we performed high-resolution time-resolved fluorescence measurements of LHCII trimers and their aggregates across a wide temperature range. Based on simulations of the excitation energy transfer in the LHCII aggregate, we associate the red-emitting state, having fluorescence maximum at 700 nm, with the partial mixing of excitonic and chlorophyll–chlorophyll charge transfer states. On the other hand, the quenched state has a totally different nature and is related to the incoherent excitation transfer to the short-lived carotenoid excited states. Our results also show that the required level of photoprotection in vivo can be achieved by a very subtle change in the number of LHCIIs switched to the quenched state.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Time-resolved fluorescence measurements of LHCII aggregates at 150 K temperature.
Figure 2: Time-resolved fluorescence spectra of LHCII trimers.
Figure 3: Results of the decomposing time-resolved fluorescence spectra of LHCII aggregates, measured at various temperatures, in two major differently emitting components.
Figure 4: Model for excitation energy transfer in LHCII aggregate.
Figure 5: Origin of various conformational states of LHCII complexes and mean excitation lifetimes in small aggregates.

References

  1. Croce, R. & van Amerongen, H. Natural strategies for photosynthetic light harvesting. Nature Chem. Biol. 10, 492–501 (2014).

    CAS  Article  Google Scholar 

  2. van Amerongen, H., Valkunas, L. & van Grondelle, R. Photosynthetic Excitons (World Scientific, 2000).

    Book  Google Scholar 

  3. Holt, N. E. et al. Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307, 433–436 (2005).

    CAS  Article  Google Scholar 

  4. Pascal, A. A. et al. Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature 436, 134–137 (2005).

    CAS  Article  Google Scholar 

  5. Ruban, A. V. et al. Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450, 575–578 (2007).

    CAS  Article  Google Scholar 

  6. Ahn, T. K. et al. Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein. Science 320, 794–797 (2008).

    CAS  Article  Google Scholar 

  7. Ruban, A. V., Johnson, M. P. & Duffy, C. D. P. The photoprotective molecular switch in the photosystem II antenna. Biochim. Biophys. Acta Bioenerg. 1817, 167–181 (2012).

    CAS  Article  Google Scholar 

  8. Staleva, H. et al. Mechanism of photoprotection in the cyanobacterial ancestor of plant antenna proteins. Nature Chem. Biol. 11, 287–291 (2015).

    CAS  Article  Google Scholar 

  9. Wientjes, E., van Amerongen, H. & Croce, R. Quantum yield of charge separation in photosystem II: functional effect of changes in the antenna size upon light acclimation. J. Phys. Chem. B 117, 11200–11208 (2013).

    CAS  Article  Google Scholar 

  10. Belgio, E. et al. Economic photoprotection in photosystem II that retains a complete light-harvesting system with slow energy traps. Nature Commun. 5, 4433 (2014).

    CAS  Article  Google Scholar 

  11. Müller, M. G. et al. Singlet energy dissipation in the photosystem II light-harvesting complex does not involve energy transfer to carotenoids. ChemPhysChem 11, 1289–1296 (2010).

    Article  Google Scholar 

  12. van Amerongen, H. & van Grondelle, R. Understanding the energy transfer function of LHCII, the major light-harvesting complex of green plants. J. Phys. Chem. B 105, 604–617 (2001).

    CAS  Article  Google Scholar 

  13. Walla, P. J., Linden, P. A., Ohta, K. & Fleming, G. R. Excited-state kinetics of the carotenoid S1 state in LHC II and two-photon excitation spectra of lutein and β-carotene in solution: efficient Car S1→Chl electronic energy transfer via hot S1 states? J. Phys. Chem. A 106, 1909–1916 (2002).

    CAS  Article  Google Scholar 

  14. Horton, P. et al. Control of the light-harvesting function of chloroplast membranes by aggregation of the LHCII chlorophyll–protein complex. FEBS Lett. 292, 1–4 (1991).

    CAS  Article  Google Scholar 

  15. Ruban, A. V., Young, A. & Horton, P. Modulation of chlorophyll fluorescence quenching in isolated light harvesting complex of photosystem II. Biochim. Biophys. Acta Bioenerg. 1186, 123–127 (1994).

    CAS  Article  Google Scholar 

  16. Ruban, A. V., Dekker, J. P., Horton, P. & van Grondelle, R. Temperature dependence of chlorophyll fluorescence from the light harvesting complex II of higher plants. Photochem. Photobiol. 61, 216–221 (1995).

    CAS  Article  Google Scholar 

  17. Magdaong, N. M., Enriquez, M. M., LaFountain, A. M., Rafka, L. & Frank, H. A. Effect of protein aggregation on the spectroscopic properties and excited state kinetics of the LHCII pigment–protein complex from green plants. Photosynth. Res. 118, 259–276 (2013).

    CAS  Article  Google Scholar 

  18. Ware, M. A., Giovagnetti, V., Belgio, E. & Ruban, A. V. PsbS protein modulates non-photochemical chlorophyll fluorescence quenching in membranes depleted of photosystems. J. Photochem. Photobiol. B 152, 301–307 (2015).

    CAS  Article  Google Scholar 

  19. Krüger, T. P. J., Novoderezkhin, V. I., Ilioaia, C. & van Grondelle, R. Fluorescence spectral dynamics of single LHCII trimers. Biophys. J. 98, 3093–3101 (2010).

    Article  Google Scholar 

  20. Lawton, W. H. & Sylvestre, E. A. Self modeling curve resolution. Technometrics 13, 617–633 (1971).

    Article  Google Scholar 

  21. Chmeliov, J., Trinkunas, G., van Amerongen, H. & Valkunas, L. Light harvesting in a fluctuating antenna. J. Am. Chem. Soc. 136, 8963–8972 (2014).

    CAS  Article  Google Scholar 

  22. Chmeliov, J., Trinkunas, G., van Amerongen, H. & Valkunas, L. Excitation migration in fluctuating light-harvesting antenna systems. Photosynth. Res. 127, 49–60 (2016).

    CAS  Article  Google Scholar 

  23. Schatz, G. H., Brock, H. & Holzwarth, A. R. Picosecond kinetics of fluorescence and absorbance changes in photosystem II particles excited at low photon density. Proc. Natl Acad. Sci. USA 84, 8414–8418 (1987).

    CAS  Article  Google Scholar 

  24. Dekker, J. P. & Boekema, E. J. Supramolecular organization of thylakoid membrane proteins in green plants. Biochim. Biophys. Acta Bioenerg. 1706, 12–39 (2005).

    CAS  Article  Google Scholar 

  25. Krüger, T. P. J., Ilioaia, C. & van Grondelle, R. Fluorescence intermittency from the main plant light-harvesting complex: resolving shifts between intensity levels. J. Phys. Chem. B 115, 5071–5082 (2011).

    Article  Google Scholar 

  26. Krüger, T. P. J., Ilioaia, C., Valkunas, L. & van Grondelle, R. Fluorescence intermittency from the main plant light-harvesting complex: sensitivity to the local environment. J. Phys. Chem. B 115, 5083–5095 (2011).

    Article  Google Scholar 

  27. Valkunas, L., Chmeliov, J., Krüger, T. P. J., Ilioaia, C. & van Grondelle, R. How photosynthetic proteins switch. J. Phys. Chem. Lett. 3, 2779–2784 (2012).

    CAS  Article  Google Scholar 

  28. Chmeliov, J., Valkunas, L., Krüger, T. P. J., Ilioaia, C. & van Grondelle, R. Fluorescence blinking of single major light-harvesting complexes. New J. Phys. 15, 085007 (2013).

    Article  Google Scholar 

  29. Novoderezhkin, V. I., Palacios, M. A., van Amerongen, H. & van Grondelle, R. Excitation dynamics in the LHCII complex of higher plants: modeling based on the 2.72 Å crystal structure. J. Phys. Chem. B 109, 10493–10504 (2005).

    CAS  Article  Google Scholar 

  30. Müh, F., Madjet, M. E.-A. & Renger, T. Structure-based identification of energy sinks in plant light-harvesting complex II. J. Phys. Chem. B 114, 13517–13535 (2010).

    Article  Google Scholar 

  31. Duffy, C. D. P. et al. Modeling of fluorescence quenching by lutein in the plant light-harvesting complex LHCII. J. Phys. Chem. B 117, 10974–10986 (2013).

    CAS  Article  Google Scholar 

  32. Chmeliov, J. et al. An ‘all pigment’ model of excitation quenching in LHCII. Phys. Chem. Chem. Phys. 17, 15857–15867 (2015).

    CAS  Article  Google Scholar 

  33. Barzda, V. et al. Singlet-singlet annihilation kinetics in aggregates and trimers of LHCII. Biophys. J. 80, 2409–2421 (2001).

    CAS  Article  Google Scholar 

  34. Bennett, D. I. G., Amarnath, K. & Fleming, G. R. A structure-based model of energy transfer reveals the principles of light harvesting in photosystem II supercomplexes. J. Am. Chem. Soc. 135, 9164–9173 (2013).

    CAS  Article  Google Scholar 

  35. Broess, K. et al. Excitation energy transfer and charge separation in photosystem II membranes revisited. Biophys. J. 91, 3776–3786 (2006).

    CAS  Article  Google Scholar 

  36. Valkunas, L., Trinkunas, G., Chmeliov, J. & Ruban, A. V. Modeling of exciton quenching in photosystem II. Phys. Chem. Chem. Phys. 11, 7576–7584 (2009).

    CAS  Article  Google Scholar 

  37. Valkunas, L. et al. Excitation migration, quenching, and regulation of photosynthetic light harvesting in photosystem II. J. Phys. Chem. B 115, 9252–9260 (2011).

    CAS  Article  Google Scholar 

  38. Caffarri, S., Broess, K., Croce, R. & van Amerongen, H. Excitation energy transfer and trapping in higher plant photosystem II complexes with different antenna sizes. Biophys. J. 100, 2094–2103 (2011).

    CAS  Article  Google Scholar 

  39. Mančal, T., Valkunas, L. & Fleming, G. R. Theory of exciton-charge transfer state coupled systems. Chem. Phys. Lett. 432, 301–305 (2006).

    Article  Google Scholar 

  40. Wahadoszamen, M., Berera, R., Ara, A. M., Romero, E. & van Grondelle, R. Identification of two emitting sites in the dissipative state of the major light harvesting antenna. Phys. Chem. Chem. Phys. 14, 759–766 (2012).

    CAS  Article  Google Scholar 

  41. Belgio, E., Johnson, M. P., Jurić, S. & Ruban, A. V. Higher plant photosystem II light-harvesting antenna, not the reaction center, determines the excited-state lifetime—both the maximum and the nonphotochemically quenched. Biophys. J. 102, 2761–2771 (2012).

    CAS  Article  Google Scholar 

  42. Moya, I., Silvestri, M., Vallon, O., Cinque, G. & Bassi, R. Time-resolved fluorescence analysis of the photosystem II antenna proteins in detergent micelles and liposomes. Biochemistry 40, 12552–12561 (2001).

    CAS  Article  Google Scholar 

  43. Ruban, A. V., Young, A. J., Pascal, A. A. & Horton, P. The effects of illumination on the xanthophyll composition of the photosystem II light-harvesting complexes of spinach thylakoid membranes. Plant Physiol. 104, 227–234 (1994).

    CAS  Article  Google Scholar 

  44. Rutkauskas, D., Chmeliov, J., Johnson, M., Ruban, A. & Valkunas, L. Exciton annihilation as a probe of the light-harvesting antenna transition into the photoprotective mode. Chem. Phys. 404, 123–128 (2012).

    CAS  Article  Google Scholar 

  45. Berry, M. W., Browne, M., Langville, A. N., Pauca, V. P. & Plemmons, R. J. Algorithms and applications for approximate nonnegative matrix factorization. Comput. Stat. Data Anal. 52, 155–173 (2007).

    Article  Google Scholar 

  46. R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013); http://www.R-project.org/

  47. Price, K. V., Storn, R. M. & Lampinen, J. A. Differential Evolution. A Practical Approach to Global Optimization (Natural Computing Series, Springer, 2005).

    Google Scholar 

  48. Ardia, D., Mullen, K. M., Peterson, B. G. & Ulrich, J. DEoptim: Differential Evolution in R. Version 2.2-3 (CRAN, 2015); http://CRAN.R-project.org/package=DEoptim

Download references

Acknowledgements

This work was supported by the Research Council of Lithuania (LMT grant no. MIP-080/2015). Computations were performed using the resources of the High Performance Computing Center ‘HPC Sauletekis’ at the Faculty of Physics, Vilnius University. A.V.R. would like to acknowledge grants from The Leverhulme Trust and UK Biotechnology and Biological Sciences Research Council and The Royal Society for the Wolfson Research Merit Award. The authors also thank E. Belgio and P. Ungerer for the LHCII purification.

Author information

Authors and Affiliations

Authors

Contributions

L.V. and A.V.R. designed the research. E.S. and R.A. performed the experiments. J.C. analysed experimental results in terms of self-modelling curve resolution, described high-temperature fluorescence kinetics in terms of fluctuating antenna model and made the figures of the manuscript. A.G. modelled excitation energy transfer in LHCII aggregates. L.V., R.A., J.C. and A.G. contributed to the interpretation of the experimental results. J.C. and A.G. wrote the manuscript. L.V., R.A., A.V.R. and C.D.P.D. discussed and commented on the manuscript.

Corresponding author

Correspondence to Leonas Valkunas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chmeliov, J., Gelzinis, A., Songaila, E. et al. The nature of self-regulation in photosynthetic light-harvesting antenna. Nature Plants 2, 16045 (2016). https://doi.org/10.1038/nplants.2016.45

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2016.45

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing