Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Vascular-mediated signalling involved in early phosphate stress response in plants

Abstract

Depletion of finite global rock phosphate (Pi) reserves will impose major limitations on future agricultural productivity and food security. Hence, modern breeding programmes seek to develop Pi-efficient crops with sustainable yields under reduced Pi fertilizer inputs. In this regard, although the long-term responses of plants to Pi stress are well documented, the early signalling events have yet to be elucidated. Here, we show plant tissue-specific responses to early Pi stress at the transcription level and a predominant role of the plant vascular system in this process. Specifically, imposition of Pi stress induces rapid and major changes in the mRNA population in the phloem translocation stream, and grafting studies have revealed that many hundreds of phloem-mobile mRNAs are delivered to specific sink tissues. We propose that the shoot vascular system acts as the site of root-derived Pi stress perception, and the phloem serves to deliver a cascade of signals to various sinks, presumably to coordinate whole-plant Pi homeostasis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spatiotemporal early response to Pi stress in cucumber.
Figure 2: Tissue-specific differentially expressed mRNAs in response to early Pi stress in cucumber.
Figure 3: Tissue-specific differentially expressed miRNAs in response to early Pi stress in cucumber.
Figure 4: Graft-transmissible mRNAs and their response to early Pi stress.
Figure 5: Graft-transmissible mRNA classification and analyses of a group of candidate long-distance signalling mRNAs.

Similar content being viewed by others

References

  1. Cordell, D., Drangert, J. O. & White, S. The story of phosphorus: global food security and food for thought. Glob. Environ. Change 19, 292–305 (2009).

    Article  Google Scholar 

  2. Dawson, C. J. & Hilton, J. Fertiliser availability in a resource-limited world: production and recycling of nitrogen and phosphorus. Food Policy 36, S14–S22 (2011).

    Article  Google Scholar 

  3. Schroeder, J. I. et al. Using membrane transporters to improve crops for sustainable food production. Nature 497, 60–66 (2013).

    Article  CAS  Google Scholar 

  4. Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).

    Article  CAS  Google Scholar 

  5. Chiou, T. J. & Lin, S. I. Signaling network in sensing phosphate availability in plants. Annu. Rev. Plant Biol. 62, 185–206 (2011).

    Article  CAS  Google Scholar 

  6. Lough, T. J. & Lucas, W. J. Integrative plant biology: role of phloem long-distance macromolecular trafficking. Annu. Rev. Plant Biol. 57, 203–232 (2006).

    Article  CAS  Google Scholar 

  7. Plaxton, W. C. & Tran, H. T. Metabolic adaptations of phosphate-starved plants. Plant Physiol. 156, 1006–1015 (2011).

    Article  CAS  Google Scholar 

  8. Péret, B. et al. Root architecture responses: in search of phosphate. Plant Physiol. 166, 1713–1723 (2014).

    Article  Google Scholar 

  9. Zhang, Z., Liao, H. & Lucas, W. J. Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants. J. Integr. Plant Biol. 56, 192–220 (2014).

    Article  CAS  Google Scholar 

  10. Fujii, H., Chiou, T. J., Lin, S. I., Aung, K. & Zhu, J. K. A miRNA involved in phosphate-starvation response in Arabidopsis. Curr. Biol. 15, 2038–2043 (2005).

    Article  CAS  Google Scholar 

  11. Pant, B. D., Buhtz, A., Kehr, J. & Scheible, W. R. MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J. 53, 731–738 (2008).

    Article  CAS  Google Scholar 

  12. Lin, S. I. et al. Regulatory network of microRNA399 and PHO2 by systemic signaling. Plant Physiol. 147, 732–746 (2008).

    Article  CAS  Google Scholar 

  13. Bari, R., Pant, B. D., Stitt, M. & Scheible, W. R. PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol. 141, 988–999 (2006).

    Article  CAS  Google Scholar 

  14. Lucas, W. J. et al. The plant vascular system: evolution, development and functions. J. Integr. Plant Biol. 55, 294–388 (2013).

    Article  CAS  Google Scholar 

  15. Lin, W. D. et al. Coexpression-based clustering of Arabidopsis root genes predicts functional modules in early phosphate deficiency signaling. Plant Physiol. 155, 1383–1402 (2011).

    Article  CAS  Google Scholar 

  16. Wolf, S., Hématy, K. & Höfte, H. Growth control and cell wall signaling in plants. Annu. Rev. Plant Biol. 63, 381–407 (2012).

    Article  CAS  Google Scholar 

  17. Buhtz, A., Springer, F., Chappell, L., Baulcombe, D. C. & Kehr, J. Identification and characterization of small RNAs from the phloem of Brassica napus. Plant J. 53, 739–749 (2008).

    Article  CAS  Google Scholar 

  18. Pant, B. D. et al. Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing. Plant Physiol. 150, 1541–1555 (2009).

    Article  Google Scholar 

  19. Kim, G., LeBlanc, M. L., Wafula, E. K. & Westwood, J. H. Genomic-scale exchange of mRNA between a parasitic plant and its hosts. Science 345, 808–811 (2014).

    Article  CAS  Google Scholar 

  20. Thieme, C. J. et al. Endogenous Arabidopsis messenger RNAs transported to distant tissues. Nature Plants 1, 15025 (2015).

    Article  CAS  Google Scholar 

  21. Yang, Y. et al. Messenger RNA exchange between scions and rootstocks in grafted grapevines. BMC Plant Biol. 15, 251 (2015).

    Article  Google Scholar 

  22. Ham, B. K. et al. A polypyrimidine tract binding protein, pumpkin RBP50, forms the basis of a phloem-mobile ribonucleoprotein complex. Plant Cell 21, 197–215 (2009).

    Article  CAS  Google Scholar 

  23. Liu, J. et al. A vacuolar phosphate transporter essential for phosphate homeostasis in Arabidopsis. Proc. Natl Acad. Sci. USA 112, E6571–E6578 (2015).

    Article  CAS  Google Scholar 

  24. Lin, W. Y., Huang, T. K., Leong, S. J. & Chiou, T. J. Long-distance call from phosphate: systemic regulation of phosphate starvation responses. J. Exp. Bot. 65, 1817–1827 (2014).

    Article  CAS  Google Scholar 

  25. Liu, T. Y. et al. Vacuolar Ca2+/H+ transport activity is required for systemic phosphate homeostasis involving shoot-to-root signaling in Arabidopsis. Plant Physiol. 156, 1176–1189 (2011).

    Article  CAS  Google Scholar 

  26. Secco, D. et al. Spatio-temporal transcript profiling of rice roots and shoots in response to phosphate starvation and recovery. Plant Cell 25, 4285–4304 (2013).

    Article  CAS  Google Scholar 

  27. O'Rourke, J. A. et al. An RNA-Seq transcriptome analysis of orthophosphate-deficient white lupin reveals novel insights into phosphorus acclimation in plants. Plant Physiol. 161, 705–724 (2013).

    Article  CAS  Google Scholar 

  28. Brinker, M. et al. Microarray analyses of gene expression during adventitious root development in Pinus contorta. Plant Physiol. 135, 1526–1539 (2004).

    Article  CAS  Google Scholar 

  29. Misson, J. et al. A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc. Natl Acad. Sci. USA 102, 11934–11939 (2005).

    Article  CAS  Google Scholar 

  30. Wu, P. et al. Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiol. 132, 1260–1271 (2003).

    Article  CAS  Google Scholar 

  31. Hammond, J. P. et al. Changes in gene expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants. Plant Physiol. 132, 578–596 (2003).

    Article  CAS  Google Scholar 

  32. Morcuende, R. et al. Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant Cell Environ. 30, 85–112 (2007).

    Article  CAS  Google Scholar 

  33. Ham, B. K., Li, G., Jia, W., Leary, J. A. & Lucas, W. J. Systemic delivery of siRNA in pumpkin by a plant PHLOEM SMALL RNA-BINDING PROTEIN 1-ribonucleoprotein complex. Plant J. 80, 683–694 (2014).

    Article  CAS  Google Scholar 

  34. Yoo, B. C. et al. A systemic small RNA signaling system in plants. Plant Cell 16, 1979–2000 (2004).

    Article  CAS  Google Scholar 

  35. Aoki, K. et al. Destination-selective long-distance movement of phloem proteins. Plant Cell 17, 1801–1814 (2005).

    Article  CAS  Google Scholar 

  36. Brosnan, C. A. et al. Nuclear gene silencing directs reception of long-distance mRNA silencing in Arabidopsis. Proc. Natl. Acad. Sci. USA 104, 14741–14746 (2007).

    Article  CAS  Google Scholar 

  37. Kehr, J. & Buhtz, A. Long distance transport and movement of RNA through the phloem. J. Exp. Bot. 59, 85–92 (2008).

    Article  CAS  Google Scholar 

  38. Lucas, W. J., Yoo, B. C. & Kragler, F. RNA as a long-distance information macromolecule in plants. Nature Rev. Mol. Cell Biol. 2, 849–857 (2001).

    Article  CAS  Google Scholar 

  39. Kim, M., Canio, W., Kessler, S. & Sinha, N. Developmental changes due to long-distance movement of a homeobox fusion transcript in tomato. Science 293, 287–289 (2001).

    Article  CAS  Google Scholar 

  40. Ruiz-Medrano, R., Xoconostle-Cázares, B. & Lucas, W. J. Phloem long-distance transport of CmNACP mRNA: implications for supracellular regulation in plants. Development 126, 4405–4419 (1999).

    CAS  PubMed  Google Scholar 

  41. Uhde-Stone, C. et al. Nylon filter arrays reveal differential gene expression in proteoid roots of white lupin in response to phosphorus deficiency. Plant Physiol. 131, 1064–1079 (2003).

    Article  CAS  Google Scholar 

  42. Lee, J. Y. et al. Selective trafficking of non-cell-autonomous proteins mediated by NtNCAPP1. Science 299, 392–396 (2003).

    Article  CAS  Google Scholar 

  43. Lin, M. K., Lee, Y. J., Lough, T. J., Phinney, B. S. & Lucas, W. J. Analysis of the pumpkin phloem proteome provides insights into angiosperm sieve tube function. Mol. Cell. Proteomics 8, 343–356 (2009).

    Article  CAS  Google Scholar 

  44. Guo, S. et al. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nature Genet. 45, 51–58 (2013).

    Article  CAS  Google Scholar 

  45. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

    Article  Google Scholar 

  46. Huang, S. et al. The genome of the cucumber, Cucumis sativus L. Nature Genet. 41, 1275–1281 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Zeng, W.-c. Hu and S. Zhang for technical support. This work was supported by grants from the USDA National Institute of Food and Agriculture (NIFA; 201015479 to W.J.L. and L.V.K.) and the National Science Foundation (IOS-1339128 to W.J.L.).

Author information

Authors and Affiliations

Authors

Contributions

Z.Z., L.V.K., Z.F. and W.J.L. conceived this project and designed the experiments. Z.Z., Y.Z., B.-K.H., J.C. and A.Y. performed the experiments. All authors contributed to data analysis. Z.Z. and W.J.L. wrote the manuscript with input from L.V.K., Z.F., Y.Z., B.-K.H., J.C. and A.Y.

Corresponding author

Correspondence to William J. Lucas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Zheng, Y., Ham, BK. et al. Vascular-mediated signalling involved in early phosphate stress response in plants. Nature Plants 2, 16033 (2016). https://doi.org/10.1038/nplants.2016.33

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2016.33

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing