Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Monitoring plant functional diversity from space

An Erratum to this article was published on 14 March 2016

The world's ecosystems are losing biodiversity fast. A satellite mission designed to track changes in plant functional diversity around the globe could deepen our understanding of the pace and consequences of this change, and how to manage it.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The data gap in regional species trait measurements.
Figure 2: The envisioned global biodiversity observatory.

References

  1. Pereira, H. M., Navarro, L. M. & Martins, I. S. Annu. Rev. Environ. Resour. 37, 25–50 (2012).

    Article  Google Scholar 

  2. Tittensor, D. P. et al. Science 346, 241–244 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Cardinale, B. J. et al. Nature 486, 59–67 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Dobson, A. et al. Ecology 87, 1915–1924 (2006).

    Article  PubMed  Google Scholar 

  5. Quijas, S., Schmid, B. & Balvanera, P. Basic Appl. Ecol. 11, 582–593 (2010).

    Article  Google Scholar 

  6. Convention on Biological Diversity Decision X/2: The Strategic Plan for Biodiversity 2011–2020 and the Aichi Biodiversity Targets (UNEP, 29 October 2010); https://www.cbd.int/doc/decisions/cop-10/cop-10-dec-02-en.pdf

  7. Inouye, D. W. Front. Ecol. Environ. 12, 371 (2014).

  8. Cadotte, M. W., Carscadden, K. & Mirotchnick, N. J. Appl. Ecol. 48, 1079–1087 (2011).

    Article  Google Scholar 

  9. Díaz, S. et al. Curr. Opin. Environ. Sustain. 14, 1–16 (2015).

    Article  Google Scholar 

  10. Pereira, H. M. et al. Science 339, 277–278 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Geijzendorffer, I. R. et al. J. Appl. Ecol. http://dx.doi.org/10.1111/1365-2664.12417 (2015).

    Google Scholar 

  12. Skidmore, A. K. et al. Nature 523, 403–405 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Petchey, O. L. & Gaston, K. J. Ecol. Lett. 5, 402–411 (2002).

    Article  Google Scholar 

  14. Flynn, D. F. B., Mirotchnick, N., Jain, M., Palmer, M. I. & Naeem, S. Ecology 92, 1573–1581 (2011).

    Article  PubMed  Google Scholar 

  15. Keil, P., Storch, D. & Jetz, W. Nature Commun. 6, 8837 (2015).

    Article  CAS  Google Scholar 

  16. Scheiter, S., Langan, L. & Higgins, S. I. New Phytol. 198, 957–969 (2013).

    Article  PubMed  Google Scholar 

  17. Yang, Y., Zhu, Q., Peng, C., Wang, H. & Chen, H. Prog. Phys. Geogr. 39, 514–535 (2015).

    Article  Google Scholar 

  18. Kattge, J. et al. Glob. Change Biol. 17, 2905–2935 (2011).

    Article  Google Scholar 

  19. Violle, C., Reich, P. B., Pacala, S. W., Enquist, B. J. & Kattge, J. Proc. Natl Acad. Sci. USA 111, 13690–13696 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Jetz, W., McPherson, J. M. & Guralnick, R. P. Trends Ecol. Evol. 27, 151–159 (2012).

    Article  PubMed  Google Scholar 

  21. Schimel, D. et al. Glob. Change Biol. 21, 1762–1776 (2015).

    Article  Google Scholar 

  22. Schimel, D. S., Asner, G. P. & Moorcroft, P. Front. Ecol. Environ. 11, 129–137 (2013).

    Article  Google Scholar 

  23. Scholes, R. J. et al. Science 321, 1044–1045 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Sandel, B. et al. J. Veg. Sci. 26, 828–838 (2015).

    Article  Google Scholar 

  25. Kreft, H. & Jetz, W. Proc. Natl Acad. Sci. USA 104, 5925–5930 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. De Jong, Schaepman, M. E., Furrer, R., Bruin, S. & Verburg, P. H. Glob. Change Biol. 19, 1953–1964 (2013).

    Article  Google Scholar 

  27. Homolová, L., Malenovský, Z., Clevers, J. G. P. W., García-Santos, G. & Schaepman, M. E. Ecol. Complex. 15, 1–16 (2013).

    Article  Google Scholar 

  28. Schaepman, M. E. et al. Remote Sens. Environ. 158, 207–219 (2015).

    Article  Google Scholar 

  29. Schaepman, M. E. et al. Remote Sens. Environ. 113, S123–S137 (2009).

    Article  Google Scholar 

  30. Asner, G. P. & Martin, R. E. Front. Ecol. Environ. 7, 269–276 (2009).

    Article  Google Scholar 

  31. Ustin, S. L. et al. Remote Sens. Environ. 113, S67–S77 (2009).

    Article  Google Scholar 

  32. Serbin, S. P., Singh, A., McNeil, B. E., Kingdon, C. C. & Townsend, P. A. Ecol. Appl. 24, 1651–1669 (2014).

    Article  Google Scholar 

  33. Roth, K. L. et al. Remote Sens. Environ. 167, 135–151 (2015).

    Article  Google Scholar 

  34. Singh, A., Serbin, S. P., McNeil, B. E., Kingdon, C. C. & Townsend, P. A. Ecol. Appl. 25, 2180–2197 (2015).

    Article  PubMed  Google Scholar 

  35. Asner, G. P., Martin, R. E., Anderson, C. B. & Knapp, D. E. Remote Sens. Environ. 158, 15–27 (2015).

    Article  Google Scholar 

  36. Hestir, E. L. et al. Remote Sens. Environ. 167, 181–195 (2015).

    Article  Google Scholar 

  37. Turpie, K. R., Klemas, V. V., Byrd, K., Kelly, M. & Jo, Y.-H. Remote Sens. Environ. 167, 206–217 (2015).

    Article  Google Scholar 

  38. Palacios, S. L. et al. Remote Sens. Environ. 167, 269–280 (2015).

    Article  Google Scholar 

  39. Moisan, T. A. H., Moisan, J. R., Linkswiler, M. A. & Steinhardt, R. A. Cont. Shelf Res. 55, 17–28 (2013).

    Article  Google Scholar 

  40. Hochberg, E. J. in Coral Reefs: An Ecosystem in Transition (eds Dubinsky, Z. & Stambler, N. ) 25–35 (Springer, 2011).

    Book  Google Scholar 

  41. Mercury, M. et al. Remote Sens. Environ. 126, 62–71 (2012).

    Article  Google Scholar 

  42. Torabzadeh, H., Hossein, T., Felix, M. & Schaepman, M. E. ISPRS J. Photogramm. Remote Sens. 97, 25–35 (2014).

    Article  Google Scholar 

  43. Asner, G. P. et al. Remote Sens. Environ. 124, 454–465 (2012).

    Article  Google Scholar 

  44. Zanne, A. E. et al. Nature 506, 89–92 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Cornwell, W. K. et al. J. Ecol. 102, 345–356 (2014).

    Article  Google Scholar 

  46. Reich, P. B., Walters, M. B. & Ellsworth, D. S. Proc. Natl Acad. Sci. USA 94, 13730–13734 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Meinzer, F. C. Oecologia 134, 1–11 (2003).

    Article  PubMed  Google Scholar 

  48. Reich, P. B. et al. Int. J. Plant Sci. 164, S143–S164 (2003).

    Article  Google Scholar 

  49. Wright, I. J. et al. Nature 428, 821–827 (2004).

    Article  CAS  Google Scholar 

  50. Kerkhoff, A. J., Fagan, W. F., Elser, J. J. & Enquist, B. J. Am. Nat. 168, E103–122 (2006).

    Article  PubMed  Google Scholar 

  51. Edwards, E. J. & Still, C. J. Ecol. Lett. 11, 266–276 (2008).

    Article  PubMed  Google Scholar 

  52. Cavender-Bares, J., Ackerly, D. D. & Kozak, K. H. Ecology 93, S1–S3 (2012).

    Article  Google Scholar 

  53. Swenson, N. G. Ecography 37, 105–110 (2014).

    Article  Google Scholar 

  54. Jetz, W. & Freckleton, R. P. Philos. Trans. R. Soc. Lond. 370, 20140016 (2015).

    Article  Google Scholar 

  55. Schrodt, F. et al. Glob. Ecol. Biogeogr. 24, 1510–1521 (2015).

    Article  Google Scholar 

  56. Asner, G. P. et al. Proc. Natl Acad. Sci. USA 111, 5604–5609 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Jetz, W., McPherson, J. M. & Guralnick, R. P. Trends Ecol. Evol. 27, 151–159 (2012).

    Article  PubMed  Google Scholar 

  58. Gelfand, A. E. et al. J. R. Stat. Soc. Ser. C Appl. Stat. 54, 1–20 (2005).

    Article  Google Scholar 

  59. Keil, P., Belmaker, J., Wilson, A. M., Unitt, P. & Jetz, W. Methods Ecol. Evol. 4, 82–94 (2013).

    Article  Google Scholar 

  60. Staenz, K., Mueller, A. & Heiden, U. in Geoscience and Remote Sensing Symposium (IGARSS), 2013 IEEE International 3502–3505 (IEEE, 2013); www.ieeexplore.ieee.org

    Book  Google Scholar 

  61. Stuffler, T. et al. Acta Astronaut. 61, 115–120 (2007).

    Article  Google Scholar 

  62. Iwasaki, A., Ohgi, N., Tanii, J., Kawashima, T. & Inada, H. in Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International 1025–1028 (IEEE, 2011); www.ieeexplore.ieee.org

    Book  Google Scholar 

  63. Green, R. O. et al. in Proc. Int. Geoscience and Remote Sensing Symposium (IGARSS '12) (NASA, 2012); http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120014260.pdf

    Google Scholar 

  64. Space Studies Board, National Research Council Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond (National Academies, 2007).

  65. Turner, W. Science 346, 301–302 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Reich, P. B., Ellsworth, D. S. & Walters, M. B. Funct. Ecol. 12, 948–958 (1998).

    Article  Google Scholar 

  67. Walker, A. P. et al. Ecol. Evol. 4, 3218–3235 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Fourty, T. & Baret, F. Int. J. Remote Sens. 19, 1283–1297 (1998).

    Article  Google Scholar 

  69. Riaño, D., Vaughan, P., Chuvieco, E., Zarco-Tejada, P. J. & Ustin, S. L. IEEE Trans. Geosci. Remote Sens. 43, 819–826 (2005).

    Article  Google Scholar 

  70. Vohland, M., Mader, S. & Dorigo, W. Int. J. Appl. Earth Obs. Geoinf. 12, 71–80 (2010).

    Article  Google Scholar 

  71. Evans, J. R. Oecologia 78, 9–19 (1989).

    Article  PubMed  Google Scholar 

  72. Loomis, R. S. Proc. Natl Acad. Sci. USA 94, 13378–13379 (1997).

    Article  CAS  PubMed  Google Scholar 

  73. Serrano, L., Peñuelas, J. & Ustin, S. L. Remote Sens. Environ. 81, 355–364 (2002).

    Article  Google Scholar 

  74. Martin, M. E., Plourde, L. C., Ollinger, S. V., Smith, M.-L. & McNeil, B. E. Remote Sens. Environ. 112, 3511–3519 (2008).

    Article  Google Scholar 

  75. Knyazikhin, Y. et al. Proc. Natl Acad. Sci. USA 110, E185–E192 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. O'Brien, M. J., Leuzinger, S., Philipson, C. D., Tay, J. & Hector, A. Nature Clim. Chang. 4, 710–714 (2014).

    Article  CAS  Google Scholar 

  77. Asner, G. & Martin, R. Remote Sens. 7, 3526–3547 (2015).

    Article  Google Scholar 

  78. Govindjee & Rabinowitch, E. Science 132, 355–356 (1960).

    Article  CAS  PubMed  Google Scholar 

  79. Grimm, B. eLS http://dx.doi.org/10.1038/npg.els.0001310 (Wiley, 2001).

    Google Scholar 

  80. Gitelson, A. A. & Merzlyak, M. N. Int. J. Remote Sens. 18, 2691–2697 (1997).

    Article  Google Scholar 

  81. Siebke, K. & Ball, M. C. Funct. Plant Biol. 36, 857 (2009).

  82. Björkman, O. & Demmig-Adams, B. in Ecophysiology of Photosynthesis 17–47 (Springer, 1995).

    Book  Google Scholar 

  83. Demmig-Adams, B. & Adams, W. W. 3rd. New Phytol. 172, 11–21 (2006).

    Article  CAS  Google Scholar 

  84. Melillo, J. M., Aber, J. D. & Muratore, J. F. Ecology 63, 621 (1982).

    Article  CAS  Google Scholar 

  85. Austin, A. T. & Ballaré, C. L. Proc. Natl Acad. Sci. USA 107, 4618–4622 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Martin, M. E. & Aber, J. D. Ecol. Appl. 7, 431–443 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

This study is an output of the ‘Biodiversity from Space’ Working Group of the National Center for Ecological Analysis and Synthesis (NCEAS) and was produced with support from the National Aeronautics and Space Administration (NASA) grant no. NNX14AN31G to NCEAS, University of California, Santa Barbara. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. The work also benefited from National Science Foundation (NSF) grant nos GEO-1408965 (or “Support for the Future Earth Interim Director and Implementation”) and DBI-1262600; NASA grant no. NNX11AP72G to W.J. and R.G.; NSF–NASA Dimensions of Biodiversity grant no. DEB-1342872 to J.C.B.; and the University of Zurich Research Priority Program on ‘Global Change and Biodiversity’ to M.E.S. and F.D.S.

Author information

Authors and Affiliations

Authors

Contributions

W.J. and J.C.-B. contributed equally to this work.

Corresponding authors

Correspondence to Walter Jetz or Jeannine Cavender-Bares.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jetz, W., Cavender-Bares, J., Pavlick, R. et al. Monitoring plant functional diversity from space. Nature Plants 2, 16024 (2016). https://doi.org/10.1038/nplants.2016.24

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2016.24

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene