An NPF transporter exports a central monoterpene indole alkaloid intermediate from the vacuole

Abstract

Plants sequester intermediates of metabolic pathways into different cellular compartments, but the mechanisms by which these molecules are transported remain poorly understood. Monoterpene indole alkaloids, a class of specialized metabolites that includes the anticancer agent vincristine, antimalarial quinine and neurotoxin strychnine, are synthesized in several different cellular locations. However, the transporters that control the movement of these biosynthetic intermediates within cellular compartments have not been discovered. Here we present the discovery of a tonoplast localized nitrate/peptide family (NPF) transporter from Catharanthus roseus, CrNPF2.9, that exports strictosidine, the central intermediate of this pathway, into the cytosol from the vacuole. This discovery highlights the role that intracellular localization plays in specialized metabolism, and sets the stage for understanding and controlling the central branch point of this pharmacologically important group of compounds.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Localization of the MIA pathway in C. roseus.
Figure 2: Self-organizing map of C. roseus transcriptomic data.
Figure 3: In planta silencing of CrNPF2.9.
Figure 4: Overexpression of CrNPF2.9–YFP in C. roseus and onion cells.
Figure 5: In vitro characterization of CrNPF2.9.

References

  1. 1

    O’Connor, S. E. & Maresh, J. J. Chemistry and biology of monoterpene indole alkaloid biosynthesis. Nat. Prod. Rep. 23, 532–547 (2006).

    Article  Google Scholar 

  2. 2

    Keglevich, P., Hazai, L., Kalaus, G. & Szantay, C. Modifications on the basic skeletons of vinblastine and vincristine. Molecules 17, 5893–5914 (2012).

    CAS  Article  Google Scholar 

  3. 3

    Courdavault, V. et al. A look inside an alkaloid multisite plant: the Catharanthus logistics. Curr. Opin. Plant. Biol. 19, 43–50 (2014).

    CAS  Article  Google Scholar 

  4. 4

    McKnight, T. D., Roessner, C. A., Devagupta, R., Scott, A. I. & Nessler, C. L. Nucleotide sequence of a cDNA encoding the vacuolar protein strictosidine synthase from Catharanthus roseus. Nucleic Acids Res. 18, 4939–4939 (1990).

    CAS  Article  Google Scholar 

  5. 5

    Guirimand, G. et al. Strictosidine activation in Apocynaceae: towards a “nuclear time bomb”? BMC Plant Biol. 10, 182 (2010).

    PubMed  PubMed Central  Google Scholar 

  6. 6

    Gongora-Castillo, E. et al. Development of transcriptomic resources for interrogating the biosynthesis of monoterpene indole alkaloids in medicinal plant species. PLoS ONE 7, e52506 (2012).

    CAS  Article  Google Scholar 

  7. 7

    Geu-Flores, F. et al. An alternative route to cyclic terpenes by reductive cyclization in iridoid biosynthesis. Nature 492, 138–142 (2012).

    CAS  Article  Google Scholar 

  8. 8

    Dunham, I. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    CAS  Article  Google Scholar 

  9. 9

    Kim, D. H., Grun, D. & van Oudenaarden, A. Dampening of expression oscillations by synchronous regulation of a microRNA and its target. Nat. Genet. 45, 1337–1344 (2013).

    CAS  Article  Google Scholar 

  10. 10

    Leran, S. et al. A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants. Trends Plant Sci. 19, 5–9 (2014).

    CAS  Article  Google Scholar 

  11. 11

    Padmanabhan, M. & Dinesh-Kumar, S. P. Virus-induced gene silencing as a tool for delivery of dsRNA into plants. Cold Spring Harb. Protoc. http://dx.doi.org/10.1101/pdb.prot5139 (2009).

  12. 12

    Gomez, C. et al. Grapevine MATE-type proteins act as vacuolar H+-dependent acylated anthocyanin transporters. Plant Physiol. 150, 402–415 (2009).

    CAS  Article  Google Scholar 

  13. 13

    Larisch, N., Schulze, C., Galione, A. & Dietrich, P. An N-terminal dileucine motif directs two-pore channels to the tonoplast of plant cells. Traffic 13, 1012–1022 (2012).

    CAS  Article  Google Scholar 

  14. 14

    Latz, A. et al. TPK1, a Ca2+-regulated Arabidopsis vacuole two-pore K+ channel is activated by 14-3-3 proteins. Plant J. 52, 449–459 (2007).

    CAS  Article  Google Scholar 

  15. 15

    Marinova, K. et al. The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+-antiporter active in proanthocyanidin-accumulating cells of the seed coat. Plant Cell 19, 2023–2038 (2007).

    CAS  Article  Google Scholar 

  16. 16

    Nelson, B. K., Cai, X. & Nebenführ, A. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J. 51, 1126–1136 (2007).

    CAS  Article  Google Scholar 

  17. 17

    Komarova, N. Y., Meier, S., Meier, A., Grotemeyer, M. S. & Rentsch, D. Determinants for Arabidopsis peptide transporter targeting to the tonoplast or plasma membrane. Traffic 13, 1090–1105 (2012).

    CAS  Article  Google Scholar 

  18. 18

    Yamada, K. et al. Functional analysis of an Arabidopsis thaliana abiotic stress-inducible facilitated diffusion transporter for monosaccharides. J. Biol. Chem. 285, 1138–1146 (2010).

    CAS  Article  Google Scholar 

  19. 19

    Wolfenstetter, S., Wirsching, P., Dotzauer, D., Schneider, S. & Sauer, N. Routes to the tonoplast: the sorting of tonoplast transporters in Arabidopsis mesophyll protoplasts. Plant Cell 24, 215–232 (2012).

    CAS  Article  Google Scholar 

  20. 20

    Carter, C. et al. The vegetative vacuole proteorne of Arabidopsis thaliana reveals predicted and unexpected proteins. Plant Cell 16, 3285–3303 (2004).

    CAS  Article  Google Scholar 

  21. 21

    Gomes, D. et al. Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. Biochim. Biophys. Acta 1788, 1213–1228 (2009).

    CAS  Article  Google Scholar 

  22. 22

    Asada, K. et al. A 7-deoxyloganetic acid glucosyltransferase contributes a key step in secologanin biosynthesis in Madagascar Periwinkle. Plant Cell 25, 4123–4134 (2013).

    CAS  Article  Google Scholar 

  23. 23

    Miettinen, K. et al. The seco-iridoid pathway from Catharanthus roseus. Nat. Commun. 5, 3606 (2014).

    Article  Google Scholar 

  24. 24

    Salim, V., Wiens, B., Masada-Atsumi, S., Yu, F. & De Luca, V. 7-Deoxyloganetic acid synthase catalyzes a key 3 step oxidation to form 7-deoxyloganetic acid in Catharanthus roseus iridoid biosynthesis. Phytochemistry 101, 23–31 (2014).

    CAS  Article  Google Scholar 

  25. 25

    Salim, V., Yu, F., Altarejos, J. & De Luca, V. Virus-induced gene silencing identifies Catharanthus roseus 7-deoxyloganic acid-7-hydroxylase, a step in iridoid and monoterpene indole alkaloid biosynthesis. Plant J. 76, 754–765 (2013).

    CAS  Article  Google Scholar 

  26. 26

    Yu, F. & De Luca, V. ATP-binding cassette transporter controls leaf surface secretion of anticancer drug components in Catharanthus roseus. Proc. Natl Acad. Sci. USA 110, 15830–15835 (2013).

    CAS  Article  Google Scholar 

  27. 27

    Carqueijeiro, I., Noronha, H., Duarte, P., Geros, H. & Sottomayor, M. Vacuolar transport of the medicinal alkaloids from Catharanthus roseus is mediated by a proton-driven antiport. Plant Physiol. 162, 1486–1496 (2013).

    CAS  Article  Google Scholar 

  28. 28

    Nour-Eldin, H. H. et al. NRT/PTR transporters are essential for translocation of glucosinolate defence compounds to seeds. Nature 488, 531–534 (2012).

    CAS  Article  Google Scholar 

  29. 29

    Krouk, G. et al. Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Dev. Cell 18, 927–937 (2010).

    CAS  Article  Google Scholar 

  30. 30

    Kanno, Y. et al. Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor. Proc. Natl Acad. Sci. USA 109, 9653–9658 (2012).

    CAS  Article  Google Scholar 

  31. 31

    Tal, I. et al. The Arabidopsis NPF3 protein is a GA transporter. Nat. Commun. 7, 11 (2016).

    Article  Google Scholar 

  32. 32

    Weichert, A. et al. AtPTR4 and AtPTR6 are differentially expressed, tonoplast-localized members of the peptide transporter/nitrate transporter 1 (PTR/NRT1) family. Planta 235, 311–323 (2012).

    CAS  Article  Google Scholar 

  33. 33

    Newstead, S. et al. Crystal structure of a prokaryotic homologue of the mammalian oligopeptide-proton symporters, PepT1 and PepT2. EMBO J. 30, 417–426 (2011).

    CAS  Article  Google Scholar 

  34. 34

    Jorgensen, M. E. et al. A functional EXXEK motif is essential for proton coupling and active glucosinolate transport by NPF2.11. Plant Cell Physiol. 56, 2340–2350 (2015).

    Article  Google Scholar 

  35. 35

    Parker, J. L. & Newstead, S. Molecular basis of nitrate uptake by the plant nitrate transporter NRT1.1. Nature 507, 68–72 (2014).

    CAS  Article  Google Scholar 

  36. 36

    Morita, M. et al. Vacuolar transport of nicotine is mediated by a multidrug and toxic compound extrusion (MATE) transporter in Nicotiana tabacum. Proc. Natl Acad. Sci. USA 106, 2447–2452 (2009).

    CAS  Article  Google Scholar 

  37. 37

    Shitan, N. et al. Involvement of the leaf-specific multidrug and toxic compound extrusion (MATE) transporter Nt-JAT2 in vacuolar sequestration of nicotine in Nicotiana tabacum. PLoS ONE 9, e108789 (2014).

    Article  Google Scholar 

  38. 38

    Shoji, T. et al. Multidrug and toxic compound extrusion-type transporters implicated in vacuolar sequestration of nicotine in tobacco roots. Plant Physiol. 149, 708–718 (2009).

    CAS  Article  Google Scholar 

  39. 39

    Hildreth, S. B. et al. Tobacco nicotine uptake permease (NUP1) affects alkaloid metabolism. Proc. Natl Acad. Sci. USA 108, 18179–18184 (2011).

    CAS  Article  Google Scholar 

  40. 40

    Brown, S., Clastre, M., Courdavault, V. & O’ Connor, S. E. De novo production of the plant-derived alkaloid strictosidine in yeast. Proc. Natl Acad. Sci. USA 112, 3205–3210 (2015).

    CAS  Article  Google Scholar 

  41. 41

    Galanie, S., Thodey, K., Trenchard, I. J., Interrante, M. F. & Smolke, C. D. Complete biosynthesis of opioids in yeast. Science 349, 1095–1100 (2015).

    CAS  Article  Google Scholar 

  42. 42

    Wehrens, R. & Buydens, L. M. C. Self- and super-organizing maps in R: the kohonen package. J. Stat. Softw. 21, 1–19 (2007).

    Article  Google Scholar 

  43. 43

    Vesanto, J. & Alhoniemi, E. Clustering of the self-organizing map. IEEE Trans. Neural Netw. 11, 586–600 (2000).

    CAS  Article  Google Scholar 

  44. 44

    Geu-Flores, F., Nour-Eldin, H. H., Nielsen, M. T. & Halkier, B. A. USER fusion: a rapid and efficient method for simultaneous fusion and cloning of multiple PCR products. Nucleic Acids Res. 35, e55 (2007).

    Article  Google Scholar 

  45. 45

    Nour-Eldin, H. H., Geu-Flores, F. & Halkier, B. A. USER cloning and USER fusion: the ideal cloning techniques for small and big laboratories. Methods Mol. Biol. 643, 185–200 (2010).

    CAS  Article  Google Scholar 

  46. 46

    Liscombe, D. K. & O’ Connor, S. E. A virus-induced gene silencing approach to understanding alkaloid metabolism in Catharanthus roseus. Phytochemistry 72, 1969–1977 (2011).

    CAS  Article  Google Scholar 

  47. 47

    Murata, J., Roepke, J., Gordon, H. & De Luca, V. The leaf epidermome of Catharanthus roseus reveals its biochemical specialization. Plant Cell 20, 524–542 (2008).

    CAS  Article  Google Scholar 

  48. 48

    McCoy, E., Galan, M. C. & O'Connor, S. E. Substrate specificity of strictosidine synthase. Bioorg. Med. Chem. Lett. 16, 2475–2478 (2006).

    CAS  Article  Google Scholar 

  49. 49

    Guirimand, G. et al. Optimization of the transient transformation of Catharanthus roseus cells by particle bombardment and its application to the subcellular localization of hydroxymethylbutenyl 4-diphosphate synthase and geraniol 10-hydroxylase. Plant Cell Rep. 28, 1215–1234 (2009).

    CAS  Article  Google Scholar 

  50. 50

    Nour-Eldin, H. H., Hansen, B. G., Norholm, M. H. H., Jensen, J. K. & Halkier, B. A. Advancing uracil-excision based cloning towards an ideal technique for cloning PCR fragments. Nucleic Acids Res. 34, 8 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the European Research Council (311363), BBSRC (BB/J004561/1) (S.E.O.), Danish National Research Foundation (DNRF99 for D.X., V.N., M.B., H.H.N., B.A.H. and 10-082858 for F.G.-F.), the Innovation Fund Denmark (j.nr. 76-2014-3) (H.H.N.) and from the Région Centre, France (ABISAL grant; E.F., A.O., T.D.D.B., V.C.). R.M.E.P. was supported by a BBSRC Studentship.

Author information

Affiliations

Authors

Contributions

R.M.E.P. made the initial discovery of CrNPF2.9 and designed and carried out all silencing experiments; D.X. and H.H.N-E designed and carried out kinetic experiments; E.F., M.I.S.T.C., T.D.B. and V.C. designed and carried out localization experiments; F.G-F., S.E.O., H.H.N-E, V.C. and B.A.H. contributed to the conception and design of the experiments; R.M.E.P., D.X., E.F., M.I.S.T.C., A.O., T.D.B, V.N., M.B., C-E.O, D.M.J., E.C.T. and A.P. contributed to the acquisition of data; R.M.E.P., D.X., E.F., M.I.S.T.C., F.G-F., V.C., H.H.N-E. and S.E.O. contributed to data analysis and interpretation; R.M.E.P. and S.E.O. drafted the manuscript and all authors critically revised and approved the final version of the manuscript for publication.

Corresponding author

Correspondence to Sarah E. O'Connor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–5, Supplementary Tables 1–4. (PDF 6463 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Payne, R., Xu, D., Foureau, E. et al. An NPF transporter exports a central monoterpene indole alkaloid intermediate from the vacuole. Nature Plants 3, 16208 (2017). https://doi.org/10.1038/nplants.2016.208

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing