Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Temperature responses of Rubisco from Paniceae grasses provide opportunities for improving C3 photosynthesis


Enhancing the catalytic properties of the CO2-fixing enzyme Rubisco is a target for improving agricultural crop productivity. Here, we reveal extensive diversity in the kinetic response between 10 and 37 °C by Rubisco from C3 and C4 species within the grass tribe Paniceae. The CO2 fixation rate ( k cat c ) for Rubisco from the C4 grasses with nicotinamide adenine dinucleotide (NAD) phosphate malic enzyme (NADP-ME) and phosphoenolpyruvate carboxykinase (PCK) photosynthetic pathways was twofold greater than the k cat c of Rubisco from NAD-ME species across all temperatures. The declining response of CO2/O2 specificity with increasing temperature was less pronounced for PCK and NADP-ME Rubisco, which would be advantageous in warmer climates relative to the NAD-ME grasses. Modelled variation in the temperature kinetics of Paniceae C3 Rubisco and PCK Rubisco differentially stimulated C3 photosynthesis relative to tobacco above and below 25 °C under current and elevated CO2. Amino acid substitutions in the large subunit that could account for the catalytic variation among Paniceae Rubisco are identified; however, incompatibilities with Paniceae Rubisco biogenesis in tobacco hindered their mutagenic testing by chloroplast transformation. Circumventing these bioengineering limitations is critical to tailoring the properties of crop Rubisco to suit future climates.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The diversity in the catalytic properties of Rubisco at 25 °C across C3 and C4 grasses within Paniceae.
Figure 2: Variation among the Paniceae Rubisco kinetics differentially affect simulated rates of C3 photosynthesis at 25 °C.
Figure 3: Divergence in the catalytic properties of Paniceae and tobacco Rubisco in response to temperature.
Figure 4: The potential for improving the thermal response of C3 photosynthesis.
Figure 5: Approaches to decipher possible catalytic switches in the L-subunit of Paniceae Rubisco.


  1. 1

    Ort, D. R. et al. Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc. Natl Acad. Sci. USA 112, 8529–8536 (2015).

    CAS  Article  Google Scholar 

  2. 2

    Zhu, X.-G., Long, S. P. & Ort, D. R. Improving photosynthetic efficiency for greater yield. Annu. Rev. Plant Biol. 61, 235–261 (2010).

    CAS  Article  Google Scholar 

  3. 3

    Long, S. P., Marshall-Colon, A. & Zhu, X.-G. Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell 161, 56–66 (2015).

    CAS  Article  Google Scholar 

  4. 4

    Carmo-Silva, E., Scales, J. C., Madgwick, P. J. & Parry, M. A. J. Optimizing Rubisco and its regulation for greater resource use efficiency. Plant Cell Env. 38, 1817–1832 (2015).

    CAS  Article  Google Scholar 

  5. 5

    Evans, J. R. Improving photosynthesis. Plant Physiol. 162, 1780–1793 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6

    Parry, M. A. J. et al. Rubisco activity and regulation as targets for crop improvement. J. Exp. Bot. 64, 717–730 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7

    von Caemmerer, S., Quick, W. P. & Furbank, R. T. The development of C4 rice: current progress and future challenges. Science 336, 1671–1672 (2012).

    CAS  Article  Google Scholar 

  8. 8

    Whitney, S. M., Houtz, R. L. & Alonso, H. Advancing our understanding and capacity to engineer nature's CO2-sequestering enzyme, Rubisco. Plant Physiol. 155, 27–35 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9

    Andersson, I. Catalysis and regulation in Rubisco. J. Exp. Bot. 59, 1555–1568 (2008).

    CAS  Article  Google Scholar 

  10. 10

    Andersson, I. & Backlund, A. Structure and function of Rubisco. Plant Physiol. Biochem. 46, 275–291 (2008).

    CAS  Article  Google Scholar 

  11. 11

    Sharwood, R. E., Ghannoum, O. & Whitney, S. M. Prospects for improving CO2 fixation in C3-crops through understanding C4-Rubisco biogenesis and catalytic diversity. Curr. Opin. Plant Biol. 31, 135–142 (2016).

    CAS  Article  Google Scholar 

  12. 12

    Carmo-Silva, A. E. et al. Rubisco activities, properties, and regulation in three different C4 grasses under drought. J. Exp. Bot. 61, 2355–2366 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13

    Galmés, J. et al. Expanding knowledge of the Rubisco kinetics variability in plant species: environmental and evolutionary trends. Plant Cell Environ. 37, 1989–2001 (2014).

    Article  Google Scholar 

  14. 14

    Galmés, J., Kapralov, M. V., Copolovici, L. O., Hermida-Carrera, C. & Niinemets, Ü. Temperature responses of the Rubisco maximum carboxylase activity across domains of life: phylogenetic signals, trade-offs, and importance for carbon gain. Photosynth. Res. 123, 183–201 (2015).

    Article  Google Scholar 

  15. 15

    Jordan, D. B. & Ogren, W. L. The CO2/O2 specificity of ribulose 1,5-bisphosphate carboxylase oxygenase: dependence on ribulosebisphosphate concentration, pH and temperature. Planta. 161, 308–313 (1984).

    CAS  Article  Google Scholar 

  16. 16

    Prins, A. et al. Rubisco catalytic properties of wild and domesticated relatives provide scope for improving wheat photosynthesis. J. Exp. Bot. 67, 1827–1838 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17

    Young, J. N. et al. Large variation in the Rubisco kinetics of diatoms reveals diversity among their carbon-concentrating mechanisms. J. Exp. Bot. 67, 3445–3456 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18

    Andrews, T. J. & Whitney, S. M. Manipulating ribulose bisphosphate carboxylase/oxygenase in the chloroplasts of higher plants. Arch. Biochem. Biophys. 414, 159–169 (2003).

    Article  Google Scholar 

  19. 19

    Raven, J. A. Rubisco: still the most abundant protein of Earth? New Phytol. 198, 1–3 (2013).

    CAS  Article  Google Scholar 

  20. 20

    Sage, R. F. The evolution of C4 photosynthesis. New Phytol. 161, 341–370 (2004).

    CAS  Article  Google Scholar 

  21. 21

    Sage, R. F., Christin, P.-A. & Edwards, E. J. The C4 plant lineages of planet Earth. J. Exp. Bot. 62, 3155–3169 (2011).

    CAS  Article  Google Scholar 

  22. 22

    Furbank, R. T. Evolution of the C4 photosynthetic mechanism: are there really three C4 acid decarboxylation types? J. Exp. Bot. 62, 3103–3108 (2011).

    CAS  Article  Google Scholar 

  23. 23

    Sage, R. F., Sage, T. L. & Kocacinar, F. Photorespiration and the evolution of C4 photosynthesis. Annu. Rev. Plant Biol. 63, 19–47 (2012).

    CAS  Article  Google Scholar 

  24. 24

    Ghannoum, O. et al. Faster rubisco is the key to superior nitrogen-use efficiency in NADP-malic enzyme relative to NAD-malic enzyme C4 grasses. Plant Physiol. 137, 638–650 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25

    Tcherkez, G. G. B., Farquhar, G. D. & Andrews, T. J. Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. Proc. Natl Acad. Sci. USA 103, 7246–7251 (2006).

    CAS  Article  Google Scholar 

  26. 26

    Boyd, R. A., Gandin, A. & Cousins, A. B. Temperature response of C4 photosynthesis: biochemical analysis of Rubisco, phosphoenolpyruvate carboxylase and carbonic anhydrase in Setaria viridis. Plant Physiol. 169, 1850–1861 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Perdomo, J. A., Cavanagh, A. P., Kubien, D. S. & Galmés, J. Temperature dependence of in vitro Rubisco kinetics in species of Flaveria with different photosynthetic mechanisms. Photosynth. Res. 124, 67–75 (2015).

    CAS  Article  Google Scholar 

  28. 28

    Sage, R. F. Variation in the k cat of Rubisco in C3 and C4 plants and some implications for photosynthetic performance at high and low temperature. J. Exp. Bot. 53, 609–620 (2002).

    CAS  Article  Google Scholar 

  29. 29

    Savir, Y., Noor, E., Milo, R. & Tlusty, T. Cross-species analysis traces adaptation of Rubisco toward optimality in a low-dimensional landscape. Proc. Natl Acad. Sci. USA 107, 3475–3480 (2010).

    CAS  Article  Google Scholar 

  30. 30

    Pearcy, R. W. & Ehleringer, J. Comparative ecophysiology of C3 and C4 plants. Plant Cell Environ. 7, 1–13 (1984).

    CAS  Article  Google Scholar 

  31. 31

    Tcherkez, G. The mechanism of Rubisco-catalyzed oxygenation. Plant Cell Environ. 39, 983–997 (2016).

    CAS  Article  Google Scholar 

  32. 32

    Farquhar, G. D., von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).

    CAS  Article  Google Scholar 

  33. 33

    Sharwood, R. E. & Whitney, S. M. Correlating Rubisco catalytic and sequence diversity within C3 plants with changes in atmospheric CO2 concentrations. Plant Cell Environ. 37, 1981–1984 (2014).

    CAS  Article  Google Scholar 

  34. 34

    Sharkey, T. D., Bernacchi, C. J., Farquhar, G. D. & Singsaas, E. L. Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ. 30, 1035–1040 (2007).

    CAS  Article  Google Scholar 

  35. 35

    Walker, B., Ariza, L. S., Kaines, S., Badger, M. R. & Cousins, A. B. Temperature response of in vivo Rubisco kinetics and mesophyll conductance in Arabidopsis thaliana: comparisons to Nicotiana tabacum. Plant Cell Environ. 36, 2108–2119 (2013).

    CAS  Article  Google Scholar 

  36. 36

    Lauteri, M., Haworth, M., Serraj, R., Monteverdi, M. C. & Centritto, M. Photosynthetic diffusional constraints affect yield in drought stressed rice cultivars during flowering. PLoS ONE 9, e109054 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37

    Olsovska, K. et al. Genotypically identifying wheat mesophyll conductance regulation under progressive drought stress. Front. Plant Sci. 7, 1111 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38

    Hermida-Carrera, C., Kapralov, M. V. & Galmés, J. Rubisco catalytic properties and temperature response in crops. Plant Physiol. 171, 2549–2561 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Orr, D. et al. Surveying Rubisco diversity and temperature response to improve crop photosynthetic efficiency. Plant Physiol. 172, 707–717 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Badger, M. R. & Collatz, G. J. Studies on the kinetic mechanism of RuBP carboxylase and oxygenase reactions, with particular reference to the effect of temperature on kinetic parameters. Carnegie YB 76, 355–361 (1977).

    Google Scholar 

  41. 41

    Sharwood, R. E., Sonawane, B. V., Ghannoum, O. & Whitney, S. M. Improved analysis of C4 and C3 photosynthesis via refined in vitro assays of their carbon fixation biochemistry. J. Exp. Bot. 67, 3137–3148 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42

    von Caemmerer, S. & Furbank, R. T. The C4 pathway: an efficient CO2 pump. Photosynth. Res. 77, 191–207 (2003).

    CAS  Article  Google Scholar 

  43. 43

    Still, C. J., Pau, S. & Edwards, E. J. Land surface skin temperature captures thermal environments of C3 and C4 grasses. Glob. Ecol. Biogeo. 23, 286–296 (2014).

    Article  Google Scholar 

  44. 44

    Galmés, J. et al. Environmentally driven evolution of Rubisco and improved photosynthesis and growth within the C3 genus Limonium (Plumbaginaceae). New Phytol. 203, 989–999 (2014).

    Article  Google Scholar 

  45. 45

    Whitney, S. M. & Andrews, T. J. Plastome-encoded bacterial ribulose-1, 5-bisphosphate carboxylase/oxygenase (RubisCO) supports photosynthesis and growth in tobacco. Proc. Natl Acad. Sci. USA 98, 14738–14743 (2001).

    CAS  Article  Google Scholar 

  46. 46

    Ishikawa, C., Hatanaka, T., Misoo, S., Miyake, C. & Fukayama, H. Functional incorporation of sorghum small subunit increases the catalytic turnover rate of Rubisco in transgenic rice. Plant Physiol. 156, 1603–1611 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47

    Bortesi, L. & Fischer, R. The CRISPR/Cas9 system for plant genome editing and beyond. Biotech. Adv. 33, 41–52 (2015).

    CAS  Article  Google Scholar 

  48. 48

    Sharwood, R. E., von Caemmerer, S., Maliga, P. & Whitney, S. M. The catalytic properties of hybrid Rubisco comprising tobacco small and sunflower large subunits mirror the kinetically equivalent source Rubiscos and can support tobacco growth. Plant Physiol. 146, 83–96 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49

    Whitney, S. M. & Sharwood, R. E. Construction of a tobacco master line to improve Rubisco engineering in chloroplasts. J. Exp. Bot. 59, 1909–1921 (2008).

    CAS  Article  Google Scholar 

  50. 50

    Blayney, M., Whitney, S. & Beck, J. NanoESI mass spectrometry of Rubisco and Rubisco activase structures and their interactions with nucleotides and sugar phosphates. J. Am. Soc. Mass. Spec. 22, 1588–1601 (2011).

    CAS  Article  Google Scholar 

Download references


We thank A. Cousins for supplying their S. viridis Rubisco kinetic data for analysis. This research was funded by the following grants from the Australian Research Council: DE130101760 (R.E.S.), DP120101603 (O.G., S.M.W.) and CE140100015 (O.G., S.M.W.).

Author information




R.E.S., O.G. and S.M.W. designed the study and undertook the experimental work. M.V.K. undertook the phylogenetic analysis and L.H.G. the structural analysis. All authors contributed to drafting the paper.

Corresponding author

Correspondence to Spencer M. Whitney.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1-7, Supplementary Tables 1-5, Supplementary References. (PDF 2566 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sharwood, R., Ghannoum, O., Kapralov, M. et al. Temperature responses of Rubisco from Paniceae grasses provide opportunities for improving C3 photosynthesis. Nature Plants 2, 16186 (2016).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing