Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Origin and function of stomata in the moss Physcomitrella patens

Abstract

Stomata are microscopic valves on plant surfaces that originated over 400 million years (Myr) ago and facilitated the greening of Earth's continents by permitting efficient shoot–atmosphere gas exchange and plant hydration1. However, the core genetic machinery regulating stomatal development in non-vascular land plants is poorly understood24 and their function has remained a matter of debate for a century5. Here, we show that genes encoding the two basic helix–loop–helix proteins PpSMF1 (SPEECH, MUTE and FAMA-like) and PpSCREAM1 (SCRM1) in the moss Physcomitrella patens are orthologous to transcriptional regulators of stomatal development in the flowering plant Arabidopsis thaliana and essential for stomata formation in moss. Targeted P. patens knockout mutants lacking either PpSMF1 or PpSCRM1 develop gametophytes indistinguishable from wild-type plants but mutant sporophytes lack stomata. Protein–protein interaction assays reveal heterodimerization between PpSMF1 and PpSCRM1, which, together with moss–angiosperm gene complementations6, suggests deep functional conservation of the heterodimeric SMF1 and SCRM1 unit is required to activate transcription for moss stomatal development, as in A. thaliana7. Moreover, stomata-less sporophytes of ΔPpSMF1 and ΔPpSCRM1 mutants exhibited delayed dehiscence, implying stomata might have promoted dehiscence in the first complex land-plant sporophytes.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The genome of the moss P. patens encodes orthologues of the bHLH transcription factors regulating stomatal development in flowering plants.
Figure 2: PpSMF1 and PpSCRM1 are required for stomatal development in the moss P. patens.
Figure 3: BiFC and yeast two-hybrid assays demonstrating PpSMF1 and PpSCRM1 protein–protein interactions.
Figure 4: Loss of PpSMF1 and the PpSCRM1 gene functions results in delayed dehiscence of spore capsules.

References

  1. Berry, J. A., Beerling, D. J. & Franks, P. J. Stomata: key players in the earth system, past and present. Curr. Opin. Plant Biol. 13, 232–239 (2010).

    Article  Google Scholar 

  2. Chater, C., Gray, J. E. & Beerling, D. J. Early evolutionary acquisition of stomatal control and development gene signalling networks. Curr. Opin. Plant Biol. 16, 638–646 (2013).

    CAS  Article  Google Scholar 

  3. Vatén, A. & Bergmann, D. C. Mechanisms of stomatal development: an evolutionary view. Evodevo 3, 11 (2012).

    Article  Google Scholar 

  4. Pressel, S., Goral, T. & Duckett, J. G. Stomatal differentiation and abnormal stomata in hornworts. J. Bryol. 36, 87–103 (2014).

    Article  Google Scholar 

  5. Haberlandt, G. Physiologische Pflanzenanatomie 5th edn (Engelmann, 1918).

    Google Scholar 

  6. MacAlister, C. A. & Bergmann, D. C. Sequence and function of basic helix-loop-helix proteins required for stomatal development in Arabidopsis are deeply conserved in land plants. Evol. Dev. 13, 182–192 (2011).

    CAS  Article  Google Scholar 

  7. Kanaoka, M. M. et al. SCREAM/ICE1 and SCREAM2 specify three cell-state transitional steps leading to Arabidopsis stomatal differentiation. Plant Cell 20, 1775–1785 (2008).

    CAS  Article  Google Scholar 

  8. Beerling, D. J. The Emerald Planet: How Plants Changed Earth's History (Oxford Univ. Press, 2007).

    Google Scholar 

  9. Edwards, D., Kerp, H. & Hass, H. Stomata in early land plants: an anatomical and ecophysiological approach. J. Exp. Bot. 49, 255–278 (1998).

    Article  Google Scholar 

  10. Menand, B. et al. An ancient mechanism controls the development of cells with a rooting function in land plants. Science 316, 1477–1480 (2007).

    CAS  Article  Google Scholar 

  11. Tam, T. H. Y., Catarino, B. & Dolan, L. Conserved regulatory mechanism controls the development of cells with rooting functions in land plants. Proc. Natl Acad. Sci. USA 112, E3959–E3968 (2015).

    CAS  Article  Google Scholar 

  12. Harrison, C. J. et al. Independent recruitment of a conserved developmental mechanism during leaf evolution. Nature 434, 509–514 (2005).

    CAS  Article  Google Scholar 

  13. Sakakibara, K., Nishiyama, T., Deguchi, H. & Hasebe, M. Class 1 KNOX genes are not involved in shoot development in the moss Physcomitrella patens but do function in sporophyte development. Evol. Dev. 10, 555–566 (2008).

    CAS  Article  Google Scholar 

  14. Horst, N. A. et al. A single homeobox gene triggers phase transition, embryogenesis and asexual reproduction. Nat. Plants 2, 15209 (2016).

    CAS  Article  Google Scholar 

  15. Raven, J. A. Selection pressures on stomatal evolution. New Phytol. 153, 371–386 (2002).

    CAS  Article  Google Scholar 

  16. MacAlister, C. A., Ohashi-Ito, K. & Bergmann, D. C. Transcription factor control of asymmetric cell divisions that establish the stomatal lineage. Nature 445, 537–540 (2007).

    CAS  Article  Google Scholar 

  17. Chinnusamy, V. et al. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev. 17, 1043–1054 (2003).

    CAS  Article  Google Scholar 

  18. Olsen, J. L. et al. The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature 530, 331–335 (2016).

    CAS  Article  Google Scholar 

  19. Ran, J.-H., Shen, T.-T., Liu, W.-J. & Wang, X.-Q. Evolution of the bHLH genes involved in stomatal development: implications for the expansion of developmental complexity of stomata in land plants. PLoS ONE 8, e78997 (2013).

    CAS  Article  Google Scholar 

  20. O'Donoghue, M. T. et al. Genome-wide transcriptomic analysis of the sporophyte of the moss Physcomitrella patens. J. Exp. Bot. 64, 3567–3581 (2013).

    CAS  Article  Google Scholar 

  21. Ortiz-Ramirez, C. et al. A transcriptome atlas of Physcomitrella patens provides insights into the evolution and development of land plants. Mol. Plant 9, 205–220 (2016).

    CAS  Article  Google Scholar 

  22. Sack, F. D. & Paolillo, D. J. Incomplete cytokinesis in Funaria stomata. Am. J. Bot. 72, 1325–1333 (1985).

    Article  Google Scholar 

  23. Weinthal, D. & Tzfira, T. Imaging protein-protein interactions in plant cells by bimolecular fluorescence complementation assay. Trends Plant Sci. 14, 59–63 (2009).

    CAS  Article  Google Scholar 

  24. Ito, T. et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl Acad. Sci. USA 98, 4569–4574 (2001).

    CAS  Article  Google Scholar 

  25. Haig, D. Filial mistletoes: the functional morphology of moss sporophytes. Ann. Bot. 111, 337–345 (2013).

    Article  Google Scholar 

  26. Merced, A. & Renzaglia, K. S. Moss stomata in highly elaborated Oedipodium (Oedipodiaceae) and highly reduced Ephemerum (Pottiaceae) sporophytes are remarkably similar. Am. J. Bot. 100, 2318–2327 (2013).

    Article  Google Scholar 

  27. Chater, C. et al. Regulatory mechanism controlling stomatal behavior conserved across 400 million years of land plant evolution. Curr. Biol. 21, 1025–1029 (2011).

    CAS  Article  Google Scholar 

  28. Garner, D. L. B. & Paolillo, D. J. J. On the functioning of stomates in Funaria. Bryologist 76, 423–427 (1973).

    Article  Google Scholar 

  29. Merced, A. & Renzaglia, K. S. Patterning of stomata in the moss Funaria: a simple way to space guard cells. Ann. Bot. 117, 985–994 (2016).

    Article  Google Scholar 

  30. Lind, C. et al. Stomatal guard cells co-opted an ancient ABA-dependent desiccation survival system to regulate stomatal closure. Curr. Biol. 25, 928–935 (2015).

    CAS  Article  Google Scholar 

  31. Franks, P. J. & Beerling, D. J. Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proc. Natl Acad. Sci. USA 106, 10343–10347 (2009).

    CAS  Article  Google Scholar 

  32. Rensing, S. A. et al. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319, 64–69 (2008).

    CAS  Article  Google Scholar 

  33. Cove, D. The moss, Physcomitrella patens. J. Plant Growth Regul. 19, 275–283 (2000).

    CAS  Article  Google Scholar 

  34. Wallace, S. et al. Conservation of Male Sterility 2 function during spore and pollen wall development supports an evolutionarily early recruitment of a core component in the sporopollenin biosynthetic pathway. New Phytol. 205, 390–401 (2015).

    CAS  Article  Google Scholar 

  35. Reski, R. & Abel, W. O. Induction of budding on choloronemata and caulonemata of the moss, Physcomitrella patens, using isopentenyladenine. Planta 165, 354–358 (1985).

    CAS  Article  Google Scholar 

  36. Egener, T. et al. High frequency of phenotypic deviations in Physcomitrella patens plants transformed with a gene-disruption library. BMC Plant Biol. 2, 6 (2002).

    Article  Google Scholar 

  37. Frank, W., Ratnadewi, D. & Reski, R. Physcomitrella patens is highly tolerant against drought, salt and osmotic stress. Planta 220, 384–394 (2005).

    CAS  Article  Google Scholar 

  38. Hohe, A., Rensing, S. A., Mildner, M., Lang, D. & Reski, R. Day length and temperature strongly influence sexual reproduction and expression of a novel MADS-box gene in the moss Physcomitrella patens. Plant Biol. 4, 595–602 (2002).

    CAS  Article  Google Scholar 

  39. Hohe, A. et al. An improved and highly standardised transformation procedure allows efficient production of single and multiple targeted gene-knockouts in a moss, Physcomitrella patens. Curr. Genet. 44, 339–347 (2004).

    CAS  Article  Google Scholar 

  40. Kamisugi, Y., Cuming, A. C. & Cove, D. J. Parameters determining the efficiency of gene targeting in the moss Physcomitrella patens. Nucleic Acids Res. 33, 10 (2005).

    Article  Google Scholar 

  41. Luna, E. et al. Plant perception of β-aminobutyric acid is mediated by an aspartyl-tRNA synthetase. Nat. Chem. Biol. 10, 450–456 (2014).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank R. Haas and T. Fulton for excellent technical assistance. R.S.C. was supported by a NERC studentship. D.C.B is a GBMF investigator of the Howard Hughes Medical Institute. D.J.B. acknowledges funding through an ERC Advanced Grant (CDREG, 322998). R.R. acknowledges funding through the Excellence Initiative of the German Federal and States Governments (EXC294). A.C.C. and Y.K. acknowledge support from BBSRC (Grant numbers BB/F001797/1 and BB/I006710/1).

Author information

Authors and Affiliations

Authors

Contributions

C.C.C., R.S.C., W.F., J.E.G., A.F., D.J.B. and R.R. designed the study, C.C.C., R.S.C., D.L. and M.T. undertook the experiments with contributions from S.W., Y.K. and A.C.C., C.A.M., S.C., D.C.B., D.L., E.L.D and W.F. contributed materials and advice. A.C.C. constructed vectors for moss targeted knockout (SMF1 and SMF2), Y.K. carried out moss transformation (SMF2-KO) and yeast two-hybrid analysis, A.C.C. and Y.K. carried out Southern blot hybridization of the knockout mutant lines. D.J.B., R.R, C.C.C. and R.S.C. wrote the paper with contributions from D.C.B. All authors read, commented on and approved the final version of the manuscript.

Corresponding authors

Correspondence to Ralf Reski or David J. Beerling.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–15, Supplementary Methods, Supplementary Discussion, Supplementary Tables 1 and 2, Supplementary References, Supplementary Data Files 1–4. (PDF 3050 kb)

Supplementary Data 1

Supplementary Dataset 1. (TXT 225 kb)

Supplementary Data 2

Supplementary Dataset 2. (TXT 174 kb)

Supplementary Data 3

Supplementary Dataset 3. (TXT 243 kb)

Supplementary Data 4

Supplementary Dataset 4. (TXT 95 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chater, C., Caine, R., Tomek, M. et al. Origin and function of stomata in the moss Physcomitrella patens. Nature Plants 2, 16179 (2016). https://doi.org/10.1038/nplants.2016.179

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2016.179

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing