Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evolution of sex-biased gene expression in a dioecious plant

Abstract

Separate sexes and sex-biased gene expression have repeatedly evolved in animals and plants, but the underlying changes in gene expression remain unknown. Here, we studied a pair of plant species, one in which separate sexes and sex chromosomes evolved recently and one which maintained hermaphrodite flowers resembling the ancestral state, to reconstruct expression changes associated with the evolution of dioecy. We found that sex-biased gene expression has evolved in autosomal and sex-linked genes in the dioecious species. Most expression changes relative to hermaphrodite flowers occurred in females rather than males, with higher and lower expression in females leading to female-biased and male-biased expression, respectively. Expression changes were more common in genes located on the sex chromosomes than the autosomes and led to feminization of the X chromosome and masculinization of the Y chromosome. Our results support a scenario in which sex-biased gene expression evolved during the evolution of dioecy to resolve intralocus sexual conflicts over the allocation of resources.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hypothetical scenarios for the evolution of sex-biased gene expression.
Figure 2: Sexual dimorphism and sex-biased gene expression in S. latifolia.
Figure 3: Expression changes in genes with sex-biased expression in S. latifolia.
Figure 4: Evolutionary changes leading to sex-biased gene expression in S. latifolia.
Figure 5: Tertiary expression changes on S. latifolia sex chromosomes.

Similar content being viewed by others

References

  1. Ellegren, H. & Parsch, J. The evolution of sex-biased genes and sex-biased gene expression. Nat. Rev. Genet. 8, 689–698 (2007).

    CAS  PubMed  Google Scholar 

  2. Mank, J. E. Sex chromosomes and the evolution of sexual dimorphism: lessons from the genome. Am. Nat. 173, 141–150 (2009).

    PubMed  Google Scholar 

  3. Stewart, A. D., Pischedda, A. & Rice, W. R. Resolving intralocus sexual conflict: genetic mechanisms and time frame. J. Hered. 101(Suppl. 1), S94–S99 (2010).

    PubMed  PubMed Central  Google Scholar 

  4. van Doorn, G. S. Intralocus sexual conflict. Ann. NY Acad. Sci. 1168, 52–71 (2009).

    PubMed  Google Scholar 

  5. Bonduriansky, R. & Chenoweth, S. F. Intralocus sexual conflict. Trends Ecol. Evol. 24, 280–288 (2009).

    PubMed  Google Scholar 

  6. Reinius, B. et al. Abundance of female-biased and paucity of male-biased somatically expressed genes on the mouse X-chromosome. BMC Genomics 13, 607 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Meisel, R. P., Malone, J. H. & Clark, A. G. Disentangling the relationship between sex-biased gene expression and X-linkage. Genome Res. 22, 1255–1265 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ellegren, H. Emergence of male-biased genes on the chicken Z-chromosome: sex-chromosome contrasts between male and female heterogametic systems. Genome Res. 21, 2082–2086 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kang, H. J. et al. Spatio-temporal transcriptome of the human brain. Nature 478, 483–489 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lipinska, A. et al. Sexual dimorphism and the evolution of sex-biased gene expression in the brown alga Ectocarpus. Mol. Biol. Evol. 32, 1581–1597 (2015).

    CAS  PubMed  Google Scholar 

  11. Harkess, A. et al. Sex-biased gene expression in dioecious garden asparagus (Asparagus officinalis). New Phytol. 207, 883–892 (2015).

    CAS  PubMed  Google Scholar 

  12. Robinson, K. M. et al. Populus tremula (European aspen) shows no evidence of sexual dimorphism. BMC Plant Biol. 14, 276 (2014).

    PubMed  PubMed Central  Google Scholar 

  13. Zemp, N., Tavares, R. & Widmer, A. Fungal infection induces sex-specific transcriptional changes and alters sexual dimorphism in the dioecious plant Silene latifolia. PLoS Genet. 11, e1005536 (2015).

    PubMed  PubMed Central  Google Scholar 

  14. Barrett, S. C. H. & Hough, J. Sexual dimorphism in flowering plants. J. Exp. Bot. 64, 67–82 (2013).

    CAS  PubMed  Google Scholar 

  15. Bernasconi, G. et al. Silene as a model system in ecology and evolution. Heredity 103, 5–14 (2009).

    CAS  PubMed  Google Scholar 

  16. Bergero, R., Qiu, S. & Charlesworth, D. Gene loss from a plant sex chromosome system. Curr. Biol. 25, 1234–1240 (2015).

    CAS  PubMed  Google Scholar 

  17. Chibalina, M. V. & Filatov, D. A. Plant Y chromosome degeneration is retarded by haploid purifying selection. Curr. Biol. 21, 1475–1479 (2011).

    CAS  PubMed  Google Scholar 

  18. Marais, G. A. B. et al. Evidence for degeneration of the Y chromosome in the dioecious plant Silene latifolia. Curr. Biol. 18, 545–549 (2008).

    CAS  PubMed  Google Scholar 

  19. Nicolas, M. et al. A gradual process of recombination restriction in the evolutionary history of the sex chromosomes in dioecious plants. PLoS Biol. 3, 47–56 (2005).

    CAS  Google Scholar 

  20. Papadopulos, A. S. T., Chester, M., Ridout, K. & Filatov, D. A. Rapid Y degeneration and dosage compensation in plant sex chromosomes. Proc. Natl Acad. Sci. USA 112, 13021–13026 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Mrackova, M. et al. Independent origin of sex chromosomes in two species of the genus Silene. Genetics 179, 1129–1133 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Delph, L. F., Knapczyk, F. N. & Taylor, D. R. Among-population variation and correlations in sexually dimorphic traits of Silene latifolia. J. Evol. Biol. 15, 1011–1020 (2002).

    Google Scholar 

  23. Delph, L. F., Arntz, A. M., Scotti-Saintagne, C. & Scotti, I. The genomic architecture of sexual dimorphism in the dioecious plant Silene latifolia. Evolution 64, 2873–2886 (2010).

    PubMed  Google Scholar 

  24. Marais, G. A. B. et al. Multiple nuclear gene phylogenetic analysis of the evolution of dioecy and sex chromosomes in the genus Silene. PLoS ONE 6, e21915 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Rautenberg, A., Sloan, D. B., Alden, V. & Oxelman, B. Phylogenetic relationships of Silene multinervia and Silene section Conoimorpha (Caryophyllaceae). Syst. Bot. 37, 226–237 (2012).

    Google Scholar 

  26. Bergero, R. & Charlesworth, D. Preservation of the Y transcriptome in a 10-million-year-old plant sex chromosome system. Curr. Biol. 21, 1470–1474 (2011).

    CAS  PubMed  Google Scholar 

  27. Muyle, A. et al. SEX-DETector: a probabilistic approach to study sex chromosomes in non-model organisms. Genome Biol. Evol. 8, 2530–2543 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Mank, J. E. Sex chromosome dosage compensation: definitely not for everyone. Trends Genet. 29, 677–683 (2013).

    CAS  PubMed  Google Scholar 

  29. Muyle, A. et al. Rapid de novo evolution of X chromosome dosage compensation in Silene latifolia, a plant with young sex chromosomes. PLoS Biol. 10, e1001308 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hough, J., Hollister, J. D., Wang, W., Barrett, S. C. H. & Wright, S. I. Genetic degeneration of old and young Y chromosomes in the flowering plant Rumex hastatulus. Proc. Natl Acad. Sci. USA 111, 7713–7718 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Moore, J. C. & Pannell, J. R. Sexual selection in plants. Curr. Biol. 21, R176–R182 (2011).

    CAS  PubMed  Google Scholar 

  32. Delph, L. F. & Herlihy, C. R. Sexual, fecundity, and viability selection on flower size and number in a sexually dimorphic plant. Evolution 66, 1154–1166 (2012).

    PubMed  Google Scholar 

  33. Vicoso, B., Kaiser, V. B. & Bachtrog, D. Sex-biased gene expression at homomorphic sex chromosomes in emus and its implication for sex chromosome evolution. Proc. Natl Acad. Sci. USA 110, 6453–6458 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Jordan, C. Y. & Connallon, T. Sexually antagonistic polymorphism in simultaneous hermaphrodites. Evolution 68, 3555–3569 (2014).

    PubMed  PubMed Central  Google Scholar 

  35. Moghadam, H. K., Pointer, M. A., Wright, A. E., Berlin, S. & Mank, J. E. W chromosome expression responds to female-specific selection. Proc. Natl Acad. Sci. USA 109, 8207–8211 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ometto, L., Shoemaker, D., Ross, K. G. & Keller, L. Evolution of gene expression in fire ants: the effects of developmental stage, caste, and species. Mol. Biol. Evol. 28, 1381–1392 (2011).

    CAS  PubMed  Google Scholar 

  37. Connalon, T. & Knowles, L. L. Intergenomic conflict revealed by patterns of sex-biased gene expression. Trends Genet. 21, 495–499 (2005).

    Google Scholar 

  38. Disteche, C. M. Dosage compensation of the sex chromosomes. Annu. Rev. Genet. 46, 537–560 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhou, Q. & Bachtrog, D. Sex-specific adaptation drives early sex chromosome evolution in Drosophila. Science 337, 341–345 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Skaletsky, H. et al. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 423, 825–837 (2003).

    CAS  PubMed  Google Scholar 

  41. Bellott, D. W. et al. Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators. Nature 508, 494–499 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Cortez, D. et al. Origins and functional evolution of Y chromosomes across mammals. Nature 508, 488–493 (2014).

    CAS  PubMed  Google Scholar 

  43. Charlesworth, B. & Charlesworth, D. The degeneration of Y chromosomes. Phil. Trans. R. Soc. Lond. B Biol. Sci. 355, 1563–1572 (2000).

    CAS  Google Scholar 

  44. Bachtrog, D. Y-chromosome evolution emerging insights into processes of Y-chromosome degeneration. Nat. Rev. Genet. 14, 113–124 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Asikainen, E. & Mutikainen, P. Pollen and resource limitation in a gynodioecious species. Am. J. Bot. 92, 487–494 (2005).

    PubMed  Google Scholar 

  46. Darwin, C. The Different Forms of Flowers on Plants of the Same Species. (John Murray, 1877).

    Google Scholar 

  47. Innocenti, P. & Morrow, E. H. The sexually antagonistic genes of Drosophila melanogaster. PLoS Biol. 8, e1000335 (2010).

    PubMed  PubMed Central  Google Scholar 

  48. Zhou, Q. & Bachtrog, D. Chromosome-wide gene silencing initiates Y degeneration in Drosophila. Curr. Biol. 22, 522–525 (2012).

    CAS  PubMed  Google Scholar 

  49. Matsunaga, S. et al. Isolation and developmental expression of male reproductive organ-specific genes in a dioecious campion, Melandrium album (Silene latifolia). Plant J. 10, 679–690 (1996).

    CAS  PubMed  Google Scholar 

  50. Charlesworth, B. & Charlesworth, D. A model for the evolution of dioecy and gynodioecy. Am. Nat. 112, 975–997 (1978).

    Google Scholar 

Download references

Acknowledgements

This work was funded through SNF projects 141260 and 160123 to A.W. and the French National Research Agency ANR-11-BSV7-013-03 to G.A.B.M. We thank C. Michel for laboratory support, S. Zoller from the ETH Zurich Genetic Diversity Centre (GDC) for assembling the reference transcriptome and members of the Plant Ecological Genetics group for insightful discussions. We thank M.C. Fischer for providing pictures of S. latifolia and M. Frei for taking care of all plants. Data produced and analysed in this paper were generated in collaboration with the GDC.

Author information

Authors and Affiliations

Authors

Contributions

Designed the experiments and formulated predictions: N.Z., A.W., G.A.B.M., D.C.; performed the experiments: N.Z.; analysed the data: N.Z., R.T., A.M.; wrote the manuscript: N.Z., A.W., D.C., G.A.B.M., R.T., A.M.

Corresponding author

Correspondence to Alex Widmer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary References, Supplementary Figures 1–9, Supplementary Tables 1–3 (PDF 1795 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zemp, N., Tavares, R., Muyle, A. et al. Evolution of sex-biased gene expression in a dioecious plant. Nature Plants 2, 16168 (2016). https://doi.org/10.1038/nplants.2016.168

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2016.168

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing