Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The heterodimeric transcription factor complex ERF115–PAT1 grants regeneration competence


Regeneration of a tissue damaged by injury represents a physiological response for organ recovery13. Although this regeneration process is conserved across multicellular taxa, plants appear to display extremely high regenerative capacities, a feature widely used in tissue culture for clonal propagation and grafting4,5. Regenerated cells arise predominantly from pre-existing populations of division-competent cells6,7; however, the mechanisms by which these cells are triggered to divide in response to injury remain largely elusive8. Here, we demonstrate that the heterodimeric transcription factor complex ETHYLENE RESPONSE FACTOR115 (ERF115)–PHYTOCHROME A SIGNAL TRANSDUCTION1 (PAT1) sustains meristem function by promoting cell renewal after stem cell loss. High-resolution time-lapse imaging revealed that cell death promotes ERF115 activity in cells that are in direct contact with damaged cells, triggering divisions that replenish the collapsed stem cells. Correspondingly, the ERF115–PAT1 complex plays an important role in full stem cell niche recovery upon root tip excision, whereas its ectopic expression triggers neoplastic growth, correlated with activation of the putative target gene WOUND INDUCED DEDIFFERENTIATION1 (WIND1)9. We conclude that the ERF115–PAT1 complex accounts for the high regenerative potential of plants, granting them the ability to efficiently replace damaged cells with new ones.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: ERF115 interacts with SCL21 and PAT1.
Figure 2: ERF115 and PAT1 co-expression precedes stress-induced cell division.
Figure 3: ERF115–PAT1 activity is required for root tip regeneration.
Figure 4: ERF115–PAT1 activity triggers uncontrolled cell division.


  1. 1

    Sena, G. & Birnbaum, K. D. Built to rebuild: in search of organizing principles in plant regeneration. Curr. Opin. Genet. Dev. 20, 460–465 (2010).

    CAS  Article  Google Scholar 

  2. 2

    Birnbaum, K. D. & Sánchez Alvarado, A. Slicing across kingdoms: regeneration in plants and animals. Cell 132, 697–710 (2008).

    CAS  Article  Google Scholar 

  3. 3

    Stappenbeck, T. S. & Miyoshi, H. The role of stromal stem cells in tissue regeneration and wound repair. Science 324, 1666–1669 (2009).

    CAS  Article  Google Scholar 

  4. 4

    Melnyk, C. W. & Meyerowitz, E. M. Plant grafting. Curr. Biol. 25, R183–R188 (2015).

    CAS  Article  Google Scholar 

  5. 5

    Thorpe, T. A. History of plant tissue culture. Mol. Biotechnol. 37, 169–180 (2007).

    CAS  Article  Google Scholar 

  6. 6

    Sugimoto, K., Gordon, S. P. & Meyerowitz, E. M. Regeneration in plants and animals: dedifferentiation, transdifferentiation, or just differentiation? Trends Cell Biol. 21, 212–218 (2011).

    CAS  Article  Google Scholar 

  7. 7

    Ikeuchi, M., Sugimoto, K. & Iwase, A. Plant callus: mechanisms of induction and repression. Plant Cell 25, 3159–3173 (2013).

    CAS  Article  Google Scholar 

  8. 8

    Vogel, G. How does a single somatic cell become a whole plant? Science 309, 86 (2005).

    CAS  Article  Google Scholar 

  9. 9

    Iwase, A. et al. The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis. Curr Biol. 21, 508–514 (2011).

    CAS  Article  Google Scholar 

  10. 10

    van den Berg, C., Willemsen, V., Hendriks, G., Weisbeek, P. & Scheres, B. Short-range control of cell differentiation in the Arabidopsis root meristem. Nature 390, 287–289 (1997).

    CAS  Article  Google Scholar 

  11. 11

    Sarkar, A. K. et al. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446, 811–814 (2007).

    CAS  Article  Google Scholar 

  12. 12

    Haecker, A. et al. Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 131, 657–668 (2004).

    CAS  Article  Google Scholar 

  13. 13

    Fulcher, N. & Sablowski, R. Hypersensitivity to DNA damage in plant stem cell niches. Proc. Natl Acad. Sci. USA 106, 20984–20988 (2009).

    CAS  Article  Google Scholar 

  14. 14

    Heyman, J. et al. ERF115 controls root quiescent center cell division and stem cell replenishment. Science 342, 860–863 (2013).

    CAS  Article  Google Scholar 

  15. 15

    Zhang, Y. et al. TOPOISOMERASE1α acts through two distinct mechanisms to regulate stele and columella stem cell maintenance in the Arabidopsis root. Plant Physiol. 171, 483–493 (2016).

    CAS  Article  Google Scholar 

  16. 16

    Heidstra, R., Welch, D. & Scheres, B. Mosaic analyses using marked activation and deletion clones dissect Arabidopsis SCARECROW action in asymmetric cell division. Genes Dev. 18, 1964–1969 (2004).

    CAS  Article  Google Scholar 

  17. 17

    Torres-Galea, P., Hirtreiter, B. & Bolle, C. Two GRAS proteins, SCARECROW-LIKE21 and PHYTOCHROME A SIGNAL TRANSDUCTION1, function cooperatively in phytochrome A signal transduction. Plant Physiol. 161, 291–304 (2013).

    CAS  Article  Google Scholar 

  18. 18

    Nakano, T., Suzuki, K., Fujimura, T. & Shinshi, H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol. 140, 411–432 (2006).

    CAS  Article  Google Scholar 

  19. 19

    Sozzani, R. et al. Spatiotemporal regulation of cell-cycle genes by SHORTROOT links patterning and growth. Nature 466, 128–132 (2010).

    CAS  Article  Google Scholar 

  20. 20

    Koizumi, K., Hayashi, T., Wu, S. & Gallagher, K. L. The SHORT-ROOT protein acts as a mobile, dose-dependent signal in patterning the ground tissue. Proc. Natl Acad. Sci. USA 109, 13010–13015 (2012).

    CAS  Article  Google Scholar 

  21. 21

    Sena, G., Wang, X., Liu, H.-Y., Hofhuis, H. & Birnbaum, K. D. Organ regeneration does not require a functional stem cell niche in plants. Nature 457, 1150–1153 (2009).

    CAS  Article  Google Scholar 

  22. 22

    Efroni, I. et al. Root regeneration triggers an embryo-like sequence guided by hormonal interactions. Cell 165, 1721–1733 (2016).

    CAS  Article  Google Scholar 

  23. 23

    Kareem, A. et al. PLETHORA genes control regeneration by a two-step mechanism. Curr. Biol. 25, 1017–1030 (2015).

    CAS  Article  Google Scholar 

  24. 24

    Chera, S. et al. Apoptotic cells provide an unexpected source of Wnt3 signaling to drive hydra head regeneration. Dev. Cell 17, 279–289 (2009).

    CAS  Article  Google Scholar 

  25. 25

    Garcia, V. et al. AtATM is essential for meiosis and the somatic response to DNA damage in plants. Plant Cell 1, 119–132 (2003).

    Article  Google Scholar 

  26. 26

    Culligan, K., Tissier, A. & Britt, A. ATR regulates a G2-phase cell-cycle checkpoint in Arabidopsis thaliana. Plant Cell 16, 1091–1104 (2004).

    CAS  Article  Google Scholar 

  27. 27

    Van Leene, J. et al. A tandem affinity purification-based technology platform to study the cell cycle interactome in Arabidopsis thaliana. Mol. Cell Proteomics 6, 1226–1238 (2007).

    CAS  Article  Google Scholar 

  28. 28

    Bürckstümmer, T. et al. An efficient tandem affinity purification procedure for interaction proteomics in mammalian cells. Nat. Methods 3, 1013–1019 (2006).

    Article  Google Scholar 

  29. 29

    Van Leene, J., Witters, E., Inzé, D., De Jaeger, G. Boosting tandem affinity purification of plant protein complexes. Trends Plant Sci. 13, 517–520 (2008).

    CAS  Article  Google Scholar 

  30. 30

    Van Leene, J. et al. Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana. Mol. Syst. Biol. 6, 397 (2010).

    Article  Google Scholar 

  31. 31

    Lammens, T. et al. Atypical E2F activity restrains APC/CCCS52A2 function obligatory for endocycle onset. Proc. Natl Acad. Sci. USA 105, 14721–14726 (2008).

    CAS  Article  Google Scholar 

  32. 32

    Heyman, J. et al. Arabidopsis ULTRAVIOLET-B-INSENSITIVE4 maintains cell division activity by temporal inhibition of the anaphase-promoting complex/cyclosome. Plant Cell 23, 4394–4410 (2011).

    CAS  Article  Google Scholar 

  33. 33

    Gietz, D., St Jean, A., Woods, R. A. & Schiestl, R. H. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 20, 1425 (1992).

  34. 34

    Beeckman, T. & Viane, R. Embedding thin plant specimens for oriented sectionings. Biotech. Histochem. 75, 23–26 (2000).

    CAS  Article  Google Scholar 

  35. 35

    De Smet, I. et al. An easy and versatile embedding method for transverse sections. J. Microsc. 213, 76–80 (2004).

    CAS  Article  Google Scholar 

Download references


The authors thank C. Bolle for sharing the pat1-2 mutant and Z. Ding for sharing the pWOX5 sequence used for construct generation, D. Van Damme for fruitful discussion concerning the dual colour confocal set-up, M. Van Durme for technical confocal microscopy assistance, and A. Bleys and M. De Cock for help in preparing the manuscript. This research was supported by the Interuniversity Attraction Poles Programme (IUAP P7/29 ‘MARS’) initiated by the Belgian Science Policy Office. J.H. and T.C. are post-doctoral fellows of the Research Foundation Flanders (F.W.O.).

Author information




J.H., T.C., K.S. and L.D.V. conceived the experiments. J.H., T.C., S.S., J.T., B.C., H.V.d.D., I.V., G.P. and G.D.J. performed the experiments. J.H., T.C. and L.D.V. analysed the data. J.H., T.C. and L.D.V. wrote the manuscript. All authors approved the manuscript.

Corresponding author

Correspondence to Lieven De Veylder.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Extended Data

Extended Data Figures 1–10, Supplementary Video Legends 1–5. (PDF 11364 kb)

Supplementary Table 1

Protein identification details obtained with the 4800 MALDI TOF/TOF Proteomics Analyzer (AB SCIEX) and the GPS Explorer v3.6 (AB SCIEX) software package combined with the search engine Mascot version 2.2 (Matrix Science). (XLSX 24 kb)

Supplementary Table 2

Primers for cloning and RT-qPCR. (XLSX 12 kb)

Supplementary Video 1

Time-lapse movie of a pERF115:TdTomato- and pPAT1:GFP-labelled root tip following recovery from bleomycin treatment. (AVI 1250 kb)

Supplementary Video 2

Time-lapse of ERF115 expression following laser-induced cell death. (AVI 433 kb)

Supplementary Video 3

Time-lapse movie of a wild-type root meristem following recovery from bleomycin treatment. (MOV 3530 kb)

Supplementary Video 4

Time-lapse movie of a ERF115SRDX mutant root meristem following recovery from bleomycin treatment. (MOV 957 kb)

Supplementary Video 5

Time-lapse movie of a pat1-2 mutant root meristem following recovery from bleomycin treatment. (MOV 1486 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Heyman, J., Cools, T., Canher, B. et al. The heterodimeric transcription factor complex ERF115–PAT1 grants regeneration competence. Nature Plants 2, 16165 (2016).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing