Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Non-self- and self-recognition models in plant self-incompatibility

Abstract

The mechanisms by which flowering plants choose their mating partners have interested researchers for a long time. Recent findings on the molecular mechanisms of non-self-recognition in some plant species have provided new insights into self-incompatibility (SI), the trait used by a wide range of plant species to avoid self-fertilization and promote outcrossing. In this Review, we compare the known SI systems, which can be largely classified into non-self- or self-recognition systems with respect to their molecular mechanisms, their evolutionary histories and their modes of evolution. We review previous controversies on haplotype evolution in the gametophytic SI system of Solanaceae species in light of a recently elucidated non-self-recognition model. In non-self-recognition SI systems, the transition from self-compatibility (SC) to SI may be more common than previously thought. Reversible transition between SI and SC in plants may have contributed to their adaptation to diverse and fluctuating environments.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Phylogenic distribution of different SI systems in flowering plants.
Figure 2: Self/non-self discrimination in SI of three plant families.
Figure 3: The collaborative non-self-recognition model.
Figure 4: Evolutionary characteristics of male and female SI components in self- and non-self-recognition systems.
Figure 5: A model for new haplotype evolution in the non-self-recognition system.
Figure 6: Possible scenarios for the evolutionary transition from/to non-self- and self-recognition.

References

  1. Igic, B., Lande, R. & Kohn, J. R. Loss of self-incompatibility and its evolutionary consequences. Int. J. Plant Sci. 169, 93–104 (2008).

    Google Scholar 

  2. Takebayashi, N. & Morrell, P. L. Is self-fertilization an evolutionary dead end? Revisiting an old hypothesis with genetic theories and a macroevolutionary approach. Am. J. Bot. 88, 1143–1150 (2001).

    CAS  PubMed  Google Scholar 

  3. Barrett, S. C. H. The evolution of plant reproductive systems: how often are transitions irreversible?. Proc. R. Soc. 280, 20130913 (2013).

    Google Scholar 

  4. Wright, S. I., Kalisz, S. & Slotte, T. Evolutionary consequences of self-fertilization in plants. Proc. Biol. Sci. 280, 20130133 (2013).

    PubMed  PubMed Central  Google Scholar 

  5. Takayama, S. & Isogai, A. Self-incompatibility in plants. Annu. Rev. Plant Biol. 56, 467–489 (2005).

    CAS  PubMed  Google Scholar 

  6. Iwano, M. & Takayama, S. Self/non-self discrimination in angiosperm self-incompatibility. Curr. Opin. Plant Biol. 15, 78–83 (2012).

    PubMed  Google Scholar 

  7. Allen, A. M., Thorogood, C. J., Hegarty, M. J., Lexer, C. & Hiscock, S. J. Pollenpistil interactions and self-incompatibility in the Asteraceae: new insights from studies of Senecio squalidus (Oxford ragwort). Ann. Bot. 108, 687–698 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Rahman, M. H. et al. Expression of stigma- and anther-specific genes located in the S locus region of Ipomoea trifida. Sex. Plant Reprod. 20, 73–85 (2007).

    Google Scholar 

  9. Kakeda, K. et al. Molecular and genetic characterization of the S locus in Hordeum bulbosum L., a wild self-incompatible species related to cultivated barley. Mol. Genet. Genomics 280, 509–519 (2008).

    CAS  PubMed  Google Scholar 

  10. Takayama, S. et al. The pollen determinant of self-incompatibility in Brassica campestris. Proc. Natl Acad. Sci. USA. 97, 1920–1925 (2000).

    CAS  PubMed  Google Scholar 

  11. Schopfer, C. R., Nasrallah, M. E. & Nasrallah, J. B. The male determinant of self-incompatibility in Brassica. Science 286, 1697–1700 (1999).

    CAS  PubMed  Google Scholar 

  12. Takasaki, T. et al. The S receptor kinase determines self-incompatibility in Brassica stigma. Nature 403, 913–916 (2000).

    CAS  PubMed  Google Scholar 

  13. Shimosato, H. et al. Characterization of the SP11/SCR high-affinity binding site involved in self/nonself recognition in Brassica self-incompatibility. Plant Cell 19, 107–117 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Takayama, S. et al. Direct ligand–receptor complex interaction controls Brassica self-incompatibility. Nature 413, 534–538 (2001).

    CAS  PubMed  Google Scholar 

  15. Kachroo, A., Schopfer, C. R., Nasrallah, M. E. & Nasrallah, J. B. Allele-specific receptor-ligand interactions in Brassica self-incompatibility. Science 293, 1824–1826 (2001).

    CAS  PubMed  Google Scholar 

  16. Murase, K. et al. A membrane-anchored protein kinase involved in Brassica self-incompatibility signaling. Science 303, 1516–1519 (2004).

    CAS  PubMed  Google Scholar 

  17. Stone, S. L., Arnoldo, M. & Goring, D. R. A breakdown of Brassica self-incompatibility in ARC1 antisense transgenic plants. Science 286, 1729–1731 (1999).

    CAS  PubMed  Google Scholar 

  18. Gu, T., Mazzurco, M., Sulaman, W., Matias, D. D. & Goring, D. R. Binding of an arm repeat protein to the kinase domain of the S-locus receptor kinase. Proc. Natl Acad. Sci. USA. 95, 382–387 (1998).

    CAS  PubMed  Google Scholar 

  19. Iwano, M. et al. Calcium signalling mediates self-incompatibility response in the Brassicaceae. Nat. Plants 1, 15128 (2015).

    CAS  PubMed  Google Scholar 

  20. Wheeler, M. J. et al. Identification of the pollen self-incompatibility determinant in Papaver rhoeas. Nature 459, 992–995 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. De Graaf, B. H. J. et al. Self-incompatibility in Papaver targets soluble inorganic pyrophosphatases in pollen. Nature 444, 490–493 (2006).

    CAS  PubMed  Google Scholar 

  22. Thomas, S. G. & Franklin-Tong, V. E. Self-incompatibility triggers programmed cell death in Papaver pollen. Nature 429, 305–309 (2004).

    CAS  PubMed  Google Scholar 

  23. Wilkins, K. A. et al. Self-incompatibility-induced programmed cell death in field poppy pollen involves dramatic acidification of the incompatible pollen tube cytosol. Plant Physiol. 167, 766–779 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wheeler, M. J., Vatovec, S. & Franklin-Tong, V. E. The pollen S-determinant in Papaver: comparisons with known plant receptors and protein ligand partners. J. Exp. Bot. 61, 2015–2025 (2010).

    CAS  PubMed  Google Scholar 

  25. Lee, H.-S., Huang, S. & Kao, T.-h. S proteins control rejection of incompatible pollen in Petunia inflata. Nature 367, 560–563 (1994).

    CAS  PubMed  Google Scholar 

  26. Murfett, J., Atherton, T. L., Mou, B., Gasser, C. S. & McClure, B. A. S-RNase expressed in transgenic Nicotiana causes S-allele-specific pollen rejection. Nature 367, 563–566 (1994).

    CAS  PubMed  Google Scholar 

  27. McClure, B. A., Gray, J. E., Anderson, M. A. & Clarke, A. E. Self-incompatibility in Nicotiana alata involves degradation of pollen rRNA. Nature 347, 757–760 (1990).

    CAS  Google Scholar 

  28. McClure, B. A. et al. Style self-incompatibility gene products of Nicotiana alata are ribonucleases. Nature 342, 955–957 (1989).

    CAS  PubMed  Google Scholar 

  29. Sijacic, P. et al. Identification of the pollen determinant of S-RNase-mediated self-incompatibility. Nature 429, 302–305 (2004).

    CAS  PubMed  Google Scholar 

  30. Kubo, K. et al. Collaborative non-self recognition system in S-RNase-based self-incompatibility. Science 330, 796–799 (2010).

    CAS  PubMed  Google Scholar 

  31. Li, S., Sun, P., Williams, J. S. & Kao, T.-h. Identification of the self-incompatibility locus F-box protein-containing complex in Petunia inflata. Plant Reprod. 27, 31–45 (2014).

    PubMed  Google Scholar 

  32. Entani, T. et al. Ubiquitin-proteasome-mediated degradation of S-RNase in a Solanaceous cross-compatibility reaction. Plant J. 78, 1014–1021 (2014).

    CAS  PubMed  Google Scholar 

  33. McClure, B., Cruz-García, F. & Romero, C. Compatibility and incompatibility in S-RNase-based systems. Ann. Bot. 108, 647–658 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Goldraij, A. et al. Compartmentalization of S-RNase and HT-B degradation in self-incompatible Nicotiana. Nature 439, 805–810 (2006).

    CAS  PubMed  Google Scholar 

  35. Vieira, J., Fonseca, N. A. & Vieira, C. P. An S-RNase-based gametophytic self-incompatibility system evolved only once in eudicots. J. Mol. Evol. 67, 179–190 (2008).

    CAS  PubMed  Google Scholar 

  36. Igic, B. & Kohn, J. R. Evolutionary relationships among self-incompatibility RNases. Proc. Natl Acad. Sci. USA. 98, 13167–13171 (2001).

    CAS  PubMed  Google Scholar 

  37. Steinbachs, J. E. & Holsinger, K. E. S-RNase-mediated gametophytic self-incompatibility is ancestral in eudicots. Mol. Biol. Evol. 19, 825–829 (2002).

    CAS  PubMed  Google Scholar 

  38. Kubo, K. et al. Gene duplication and genetic exchange drive the evolution of S-RNase-based self-incompatibility in Petunia. Nat. Plants 1, 14005 (2015).

    CAS  PubMed  Google Scholar 

  39. Hiscock, S. J., Kües, U. & Dickinson, H. G. Molecular mechanisms of self-incompatibility in flowering plants and fungi. Different means to the same end. Trends Cell Biol. 6, 421–428 (1996).

    CAS  PubMed  Google Scholar 

  40. Barrett, S. C. H. & Shore, J. S. in Self-Incompatibility Flowering Plants (ed. Franklin-Tong, V. E. ) 3–32 (Springer, 2008).

    Google Scholar 

  41. Williams, J. S., Der, J. P., dePamphilis, C. W. & Kao, T.-h. Transcriptome analysis reveals the same 17 S-Locus F-Box genes in two haplotypes of the self-incompatibility locus of Petunia inflata. Plant Cell 26, 2873–2888 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Williams, J. S. et al. Four previously identified Petunia inflata S-locus F-box genes are involved in pollen specificity in self-incompatibility. Mol. Plant 7, 567–569 (2014).

    CAS  PubMed  Google Scholar 

  43. Goldberg, E. E. et al. Species selection maintains self-incompatibility. Science 330, 493–495 (2010).

    CAS  PubMed  Google Scholar 

  44. Aguiar, B. et al. Patterns of evolution at the gametophytic self-incompatibility Sorbus aucuparia (Pyrinae) S pollen genes support the non-self recognition by multiple factors model. J. Exp. Bot. 64, 2423–2434 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kakui, H. et al. Sequence divergence and loss-of-function phenotypes of S locus F-box brothers genes are consistent with non-self recognition by multiple pollen determinants in self-incompatibility of Japanese pear (Pyrus pyrifolia). Plant J. 68, 1028–1038 (2011).

    CAS  PubMed  Google Scholar 

  46. Minamikawa, M. et al. Apple S locus region represents a large cluster of related, polymorphic and pollen-specific F-box genes. Plant Mol. Biol. 74, 143–154 (2010).

    CAS  PubMed  Google Scholar 

  47. Crane, M. B. & Lewis, D. Genetical studies in pears—III. Incompatibility and sterility. J. Genet. 43, 31–43 (1942).

    Google Scholar 

  48. Adachi, Y. et al. Characteristics of fruiting and pollen tube growth of apple autotetraploid cultivars showing self-compatibility. J. Japanese Soc. Hortic. Sci. 78, 402–409 (2009).

    Google Scholar 

  49. Lewis, D. & Modlibowska, I. Genetical studies in pears—IV. Pollen-tube growth and incompatibility. J. Genet. 43, 211–222 (1942).

    Google Scholar 

  50. Okada, K. et al. Deletion of a 236 kb region around S 4 -RNase in a stylar-part mutant S4sm-haplotype of Japanese pear. Plant Mol. Biol. 66, 389–400 (2008).

    CAS  PubMed  Google Scholar 

  51. Sato, K. et al. Coevolution of the S-locus genes SRK, SLG and SP11/SCR in Brassica oleracea and B. rapa. Genetics 162, 931–940 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Takuno, S. et al. Effects of recombination on hitchhiking diversity in the Brassica self-incompatibility locus complex. Genetics 177, 949–958 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Newbigin, E., Paape, T. & Kohn, J. R. RNase-based self-incompatibility: puzzled by pollen S. Plant Cell 20, 2286–2292 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Vieira, J., Morales-Hojas, R., Santos, R. A. M. & Vieira, C. P. Different positively selected sites at the gametophytic self-incompatibility pistil S-RNase gene in the Solanaceae and Rosaceae (Prunus, Pyrus, and Malus). J. Mol. Evol. 65, 175–185 (2007).

    CAS  PubMed  Google Scholar 

  55. Igic, B., Smith, W. A., Robertson, K. A., Schaal, B. A. & Kohn, J. R. Studies of self-incompatibility in wild tomatoes: I. S-allele diversity in Solanum chilense (Dun.) Reiche [corrected] (Solanaceae). Heredity 99, 553–561 (2007).

    CAS  PubMed  Google Scholar 

  56. Matton, D. P., Luu, D. T., Morse, D. & Cappadocia, M. Reply: establishing a paradigm for the generation of new S alleles. Plant Cell 12, 313–315 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Uyenoyama, M. K. & Newbigin, E. Evolutionary dynamics of dual-specificity self-incompatibility alleles. Plant Cell 12, 310–312 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Charlesworth, D. How can two-gene models of self-incompatibility generate new specificities? Plant Cell 12, 309–310 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Uyenoyama, M. K., Zhang, Y., Newbigin, E. On the origin of self-incompatibility haplotypes: transition through self-compatible intermediates. Genetics 157, 1805–1817 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ioerger, T. R., Gohlke, J. R., Xu, B. & Kao, T.-H. Primary structural features of the self-incompatibility protein in Solanaceae. Sex. Plant Reprod. 4, 81–87 (1991).

    Google Scholar 

  61. Matton, D. et al. Hypervariable domains of self-incompatibility RNases mediate allele-specific pollen recognition. Plant Cell 9, 1757–1766 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Matton, D. P. et al. Production of an S RNase with dual specificity suggests a novel hypothesis for the generation of new S alleles. Plant Cell 11, 2087–2097 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Sims, T. L. & Robbins, T. P. in Petunia: Evolutionary, Developmental and Physiological Genetics (eds Gerats, T. & Strommer, J. ) 85–106 (Springer, 2009).

    Google Scholar 

  64. De Franceschi, P., Dondini, L. & Sanzol, J. Molecular bases and evolutionary dynamics of self-incompatibility in the Pyrinae (Rosaceae). J. Exp. Bot. 63, 4015–4032 (2012).

    CAS  PubMed  Google Scholar 

  65. Busch, J. W., Schoen, D. J. The evolution of self-incompatibility when mates are limiting. Trends Plant Sci. 13, 128–136 (2008).

    CAS  PubMed  Google Scholar 

  66. Tsuchimatsu, T., Shimizu, K. K. Effects of pollen availability and the mutation bias on the fixation of mutations disabling the male specificity of self-incompatibility. J. Evol. Biol. 26, 2221–2232 (2013).

    CAS  PubMed  Google Scholar 

  67. Tsuchimatsu, T. et al. Evolution of self-compatibility in Arabidopsis by a mutation in the male specificity gene. Nature 464, 1342–1346 (2010).

    CAS  PubMed  Google Scholar 

  68. Igic, B., Bohs, L. & Kohn, J. R. Ancient polymorphism reveals unidirectional breeding system shifts. Proc. Natl Acad. Sci. USA. 103, 1359–1363 (2006).

    CAS  PubMed  Google Scholar 

  69. Shimizu, K. K., Tsuchimatsu, T. Evolution of selfing: recurrent patterns in molecular adaptation. Annu. Rev. Ecol. Evol. Syst. 46, 593–622 (2015).

    Google Scholar 

  70. Tao, R. et al. Self-compatible peach (Prunus persica) has mutant versions of the S haplotypes found in self-incompatible Prunus species. Plant Mol. Biol. 63, 109–123 (2007).

    CAS  PubMed  Google Scholar 

  71. Bosković, R. I., Tobutt, K. R., Ortega, E., Sutherland, B. G. & Godini, A. Self-(in)compatibility of the almonds P. dulcis and P. webbii: detection and cloning of ‘wild-type S f’ and new self-compatibility alleles encoding inactive S-RNases. Mol. Genet. Genomics 278, 665–676 (2007).

    PubMed  Google Scholar 

  72. Li, W. & Chetelat, R. T. Unilateral incompatibility gene ui1.1 encodes an S-locus F-box protein expressed in pollen of Solanum species. Proc. Natl Acad. Sci. USA. 112, 4417–4422 (2015).

    CAS  PubMed  Google Scholar 

  73. Kondo, K. et al. Insights into the evolution of self-compatibility in Lycopersicon from a study of stylar factors. Plant J. 30, 143–153 (2002).

    CAS  PubMed  Google Scholar 

  74. Tsukamoto, T., Ando, T., Watanabe, H., Marchesi, E. & Kao, T. Duplication of the S-locus F-box gene is associated with breakdown of pollen function in an S-haplotype identified in a natural population of self-incompatible Petunia axillaris. Plant Mol. Biol. 57, 141–153 (2005).

    CAS  PubMed  Google Scholar 

  75. Miller, J. S., Levin, R. A., Feliciano, N. M. A tale of two continents: Baker's rule and the maintenance of self-incompatibility in Lycium (Solanaceae). Evolution 62, 1052–1065 (2008).

    CAS  PubMed  Google Scholar 

  76. Paape, T., Kohn, J. R. Differential strengths of selection on S-RNases from Physalis and Solanum (Solanaceae). BMC Evol. Biol. 11, 243 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Entani, T. et al. Comparative analysis of the self-incompatibility (S-) locus region of Prunus mume: identification of a pollen-expressed F-box gene with allelic diversity. Genes Cells 8, 203–213 (2003).

    CAS  PubMed  Google Scholar 

  78. Ushijima, K. et al. Structural and transcriptional analysis of the self-incompatibility locus of almond: identification of a pollen-expressed F-box gene with haplotype-specific polymorphism. Plant Cell 15, 771–81 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Hauck, N. R., Yamane, H., Tao, R. & Iezzoni, A. F. Accumulation of nonfunctional S-haplotypes results in the breakdown of gametophytic self-incompatibility in tetraploid Prunus. Genetics 172, 1191–1198 (2006).

    PubMed  PubMed Central  Google Scholar 

  80. Tsukamoto, T., Hauck, N. R., Tao, R., Jiang, N., Iezzoni, A. F. Molecular and genetic analyses of four nonfunctional S haplotype variants derived from a common ancestral S haplotype identified in sour cherry (Prunus cerasus L.). Genetics 184, 411–27 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Sonneveld, T., Tobutt, K. R., Vaughan, S. P. & Robbins, T. P. Loss of pollen-S function in two self-compatible selections of Prunus avium is associated with deletion/mutation of an S haplotype-specific F-box gene. Plant Cell 17, 37–51 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Ushijima, K. et al. The S haplotype-specific F-box protein gene, SFB, is defective in self-compatible haplotypes of Prunus avium and P. mume. Plant J. 39, 573–586 (2004).

    CAS  PubMed  Google Scholar 

  83. Akagi, T., Henry, I. M., Morimoto, T. & Tao, R. Insights into the Prunus-specific S-RNase-based self-incompatibility system from a genome-wide analysis of the evolutionary radiation of S locus-related F-box genes. Plant Cell Physiol. 57, 1281–1294 (2016).

    CAS  PubMed  Google Scholar 

  84. Aguiar, B. et al. Convergent evolution at the gametophytic self-incompatibility system in Malus and Prunus. PLoS One 10, e0126138 (2015).

    PubMed  PubMed Central  Google Scholar 

  85. Morimoto, T., Akagi, T., Tao, R. Evolutionary analysis of genes for S-RNase-based self-incompatibility reveals S locus duplications in the ancestral Rosaceae. Hortic. J. 84, 233–242 (2015).

    CAS  Google Scholar 

  86. Matsumoto, D. & Tao, R. Recognition of a wide-range of S-RNases by S locus F-box like 2, a general-inhibitor candidate in the Prunus-specific S-RNase-based self-incompatibility system. Plant Mol. Biol. 91, 459–469 (2016).

    CAS  PubMed  Google Scholar 

  87. Williams, J. S., Wu, L., Li, S., Sun, P. & Kao, T.-H. Insight into S-RNase-based self-incompatibility in Petunia: recent findings and future directions. Front. Plant Sci. 6, 1–6 (2015).

    Google Scholar 

  88. Gu, C. et al. Inheritance of hetero-diploid pollen S-haplotype in self-compatible tetraploid Chinese cherry (Prunus pseudocerasus Lindl). PLoS One 8, e61219 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Nunes, M. D. S., Santos, R. A. M., Ferreira, S. M., Vieira, J., Vieira, C. P. Variability patterns and positively selected sites at the gametophytic self-incompatibility pollen SFB gene in a wild self-incompatible Prunus spinosa (Rosaceae) population. New Phytol. 172, 577–587 (2006).

    CAS  PubMed  Google Scholar 

  90. Lewis, D. & Crowe, L. K. Unilateral interspecific incompatibility in flowering plants. Heredity 12, 233–256 (1958).

    Google Scholar 

  91. Murfett, J. et al. S RNase and interspecific pollen rejection in the genus Nicotiana: multiple pollen-rejection pathways contribute to unilateral incompatibility between self-incompatible and self-compatible species. Plant Cell 8, 943–958 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Li, W. & Chetelat, R. T. A pollen factor linking inter- and intraspecific pollen rejection in tomato. Science 330, 1827–1830 (2010).

    CAS  PubMed  Google Scholar 

  93. Covey, P. a. et al. Multiple features that distinguish unilateral incongruity and self-incompatibility in the tomato clade. Plant J. 64, 367–378 (2010).

    CAS  PubMed  Google Scholar 

  94. Shiba, H. et al. A pollen coat protein, SP11/SCR, determines the pollen S-specificity in the self-incompatibility of Brassica species. Plant Physiol. 125, 2095–2103 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Shiba, H. et al. The dominance of alleles controlling self-incompatibility in Brassica pollen is regulated at the RNA level. Plant Cell 14, 491–504 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Shiba, H. et al. Dominance relationships between self-incompatibility alleles controlled by DNA methylation. Nat. Genet. 38, 297–299 (2006).

    CAS  PubMed  Google Scholar 

  97. Tarutani, Y. et al. Trans-acting small RNA determines dominance relationships in Brassica self-incompatibility. Nature 466, 983–986 (2010).

    CAS  PubMed  Google Scholar 

  98. Billiard, S. & Castric, V. Evidence for Fisher's dominance theory: how many ‘special cases’? Trends Genet. 27, 441–5 (2011).

    CAS  PubMed  Google Scholar 

  99. Durand, E. et al. Dominance hierarchy arising from the evolution of a complex small RNA regulatory network. Science 346, 1200–1205 (2014).

    CAS  PubMed  Google Scholar 

  100. Billiard, S., Castric, V. & Vekemans, X. A general model to explore complex dominance patterns in plant sporophytic self-incompatibility systems. Genetics 175, 1351–1369 (2007).

    PubMed  PubMed Central  Google Scholar 

  101. Klaas, M. et al. Progress towards elucidating the mechanisms of self-incompatibility in the grasses: further insights from studies in Lolium. Ann. Bot. 108, 677–685 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Kakeda, K. S locus-linked F-box genes expressed in anthers of Hordeum bulbosum. Plant Cell Rep. 28, 1453–1460 (2009).

    CAS  PubMed  Google Scholar 

  103. Nowak, M. D., Davis, A. P., Anthony, F. & Yoder, A. D. Expression and trans-specific polymorphism of self-incompatibility RNases in Coffea (Rubiaceae). PLoS One 6, e21019 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 161, 105–121 (2009).

    Google Scholar 

  105. Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Grants-in-Aid for Scientific Research on Innovative Areas (23113002, 16H06467, 16H06464 to S.T.; 16H01467 to S.F.), and Grants-in-Aid for Scientific Research (21248014, 25252021, 16H06380 to S.T.) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiji Takayama.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fujii, S., Kubo, Ki. & Takayama, S. Non-self- and self-recognition models in plant self-incompatibility. Nature Plants 2, 16130 (2016). https://doi.org/10.1038/nplants.2016.130

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2016.130

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing