Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The energetic and carbon economic origins of leaf thermoregulation

A Corrigendum to this article was published on 26 August 2016


Leaf thermoregulation has been documented in a handful of studies, but the generality and origins of this pattern are unclear. We suggest that leaf thermoregulation is widespread in both space and time, and originates from the optimization of leaf traits to maximize leaf carbon gain across and within variable environments. Here we use global data for leaf temperatures, traits and photosynthesis to evaluate predictions from a novel theory of thermoregulation that synthesizes energy budget and carbon economics theories. Our results reveal that variation in leaf temperatures and physiological performance are tightly linked to leaf traits and carbon economics. The theory, parameterized with global averaged leaf traits and microclimate, predicts a moderate level of leaf thermoregulation across a broad air temperature gradient. These predictions are supported by independent data for diverse taxa spanning a global air temperature range of 60 °C. Moreover, our theory predicts that net carbon assimilation can be maximized by means of a trade-off between leaf thermal stability and photosynthetic stability. This prediction is supported by globally distributed data for leaf thermal and photosynthetic traits. Our results demonstrate that the temperatures of plant tissues, and not just air, are vital to developing more accurate Earth system models.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Leaf thermal traits and the leaf economics spectrum.
Figure 2: Leaf thermoregulation across global air temperature gradients.
Figure 3: Relationship between T90 and τ.
Figure 4: Sensitivity of leaf thermal time constants τ to variation in seven constituent leaf traits.


  1. 1

    Michaletz, S. T. et al. Plant thermoregulation: energetics, trait-environment interactions, and carbon economics. Trends Ecol. Evol. 30, 714–724 (2015).

    PubMed  Article  Google Scholar 

  2. 2

    Mahan, J. R. & Upchurch, D. R. Maintenance of constant leaf temperature by plants—I. Hypothesis-limited homeothermy. Environ. Exp. Bot. 28, 351–357 (1988).

    Article  Google Scholar 

  3. 3

    Michaletz, S. T., Cheng, D., Kerkhoff, A. J. & Enquist, B. J. Convergence of terrestrial plant production across global climate gradients. Nature 512, 39–43 (2014).

    CAS  PubMed  Article  Google Scholar 

  4. 4

    Cuny, H. E. et al. Woody biomass production lags stem-girth increase by over one month in coniferous forests. Nat. Plants 1, 15160 (2015).

    CAS  PubMed  Article  Google Scholar 

  5. 5

    Yvon-Durocher, G. et al. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature 507, 488–491 (2014).

    CAS  PubMed  Article  Google Scholar 

  6. 6

    Williams, P. A. et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Change 3, 292–297 (2013).

    Article  Google Scholar 

  7. 7

    Huxman, T. E., Turnipseed, A. A., Sparks, J. P., Harley, P. C. & Monson, R. K. Temperature as a control over ecosystem CO2 fluxes in a high-elevation, subalpine forest. Oecologia 134, 537–546 (2003).

    CAS  PubMed  Article  Google Scholar 

  8. 8

    Berry, J. & Bjorkman, O. Photosynthetic response and adaptation to temperature in higher plants. Ann. Rev. Plant Physiol. 31, 491–543 (1980).

    Article  Google Scholar 

  9. 9

    Slatyer, R. & Morrow, P. Altitudinal variation in the photosynthetic characteristics of snow gum, Eucalyptus pauciflora Sieb. Ex Spreng. I. Seasonal changes under field conditions in the Snowy Mountains area of south-eastern Australia. Aust. J. Bot. 25, 1–20 (1977).

    Article  Google Scholar 

  10. 10

    Korner, C. & Diemer, M. In situ photosynthetic responses to light, temperature and carbon dioxide in herbaceous plants from low and high altitude. Funct. Ecol. 1, 179–194 (1987).

    Article  Google Scholar 

  11. 11

    Yamori, W., Hikosaka, K. & Way, D. A. Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynth. Res. 119, 101–117 (2014).

    CAS  PubMed  Article  Google Scholar 

  12. 12

    Gates, D., Hiesey, W., Milner, H. & Nobs, M. Temperatures of Mimulus leaves in natural environments and in a controlled chamber. Carnegie Inst. Wash. Yearb. 63, 418–430 (1964).

    Google Scholar 

  13. 13

    Linacre, E. T. A note on a feature of leaf and air temperatures. Agric. Meteorol. 1, 66–72 (1964).

    Article  Google Scholar 

  14. 14

    Linacre, E. T. Further notes on a feature of leaf and air temperatures. Arch. Meteorol. Geophys. Bioklimatol. B 15, 422–436 (1967).

    Article  Google Scholar 

  15. 15

    Upchurch, D. R. & Mahan, J. R. Maintenance of constant leaf temperature by plants—II. Experimental observations in cotton. Environ. Exp. Bot. 28, 359–366 (1988).

    Article  Google Scholar 

  16. 16

    Helliker, B. R. & Richter, S. L. Subtropical to boreal convergence of tree-leaf temperatures. Nature 454, 511–514 (2008).

    CAS  PubMed  Article  Google Scholar 

  17. 17

    Potter, K., Davidowitz, G. & Woods, H. A. Insect eggs protected from high temperatures by limited homeothermy of plant leaves. J. Exp. Biol. 212, 3448–3454 (2009).

    PubMed  Article  Google Scholar 

  18. 18

    Smith, W. K. & Carter, G. A. Shoot structural effects on needle temperatures and photosynthesis in conifers. Am. J. Bot. 75, 496–500 (1988).

    Article  Google Scholar 

  19. 19

    Huey, R. B. & Slatkin, M. Cost and benefits of lizard thermoregulation. Q. Rev. Biol. 51, 363–384 (1976).

    CAS  PubMed  Article  Google Scholar 

  20. 20

    Rowland, L. et al. Modelling climate change responses in tropical forests: similar productivity estimates across five models, but different mechanisms and responses. Geosci. Model Dev. 8, 1097–1110 (2015).

    Article  Google Scholar 

  21. 21

    Reich, P. B., Walters, M. B. & Ellsworth, D. S. From tropics to tundra: global convergence in plant functioning. Proc. Natl Acad. Sci. 94, 13730–13734 (1997).

    CAS  PubMed  Article  Google Scholar 

  22. 22

    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).

    CAS  PubMed  Article  Google Scholar 

  23. 23

    Falster, D. S. et al. Lifetime return on investment increases with leaf lifespan among 10 Australian woodland species. New Phytol. 193, 409–419 (2012).

    PubMed  Article  Google Scholar 

  24. 24

    Blonder, B., Violle, C., Bentley, L. P. & Enquist, B. J. Venation networks and the origin of the leaf economics spectrum. Ecol. Lett. 14, 91–100 (2011).

    PubMed  Article  Google Scholar 

  25. 25

    Ball, M., Cowan, I. & Farquhar, G. Maintenance of leaf temperature and the optimisation of carbon gain in relation to water loss in a tropical mangrove forest. Funct. Plant Biol. 15, 263–276 (1988).

    Article  Google Scholar 

  26. 26

    Slot, M., Garcia, M. N. & Winter, K. Temperature response of CO2 exchange in three tropical tree species. Funct. Plant Biol. 43, 468–478 (2016).

    CAS  Article  Google Scholar 

  27. 27

    Slot, M. & Winter, K. in Tropical Tree Physiology Adaptations and Responses in a Changing Environment (eds Goldstein, G. & Santiago, S. L. ) 385–412 (Springer International, 2016).

    Book  Google Scholar 

  28. 28

    The Botanical Information and Ecology Network (BIEN, 2016);

  29. 29

    New, M., Lister, D., Hulme, M. & Makin, I. A high-resolution data set of surface climate over global land areas. Climate Res. 21, 1–25 (2002).

    Article  Google Scholar 

  30. 30

    Kearney, M. R., Isaac, A. P. & Porter, W. P. microclim: Global estimates of hourly microclimate based on long-term monthly climate averages. Sci. Data 1, 140006 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  31. 31

    Paw U, K. T. A theoretical basis for the leaf equivalence point temperature. Agricult. Meteorol. 30, 247–256 (1984).

    Article  Google Scholar 

  32. 32

    Kikuzawa, K. & Lechowicz, M. J. Toward synthesis of relationships among leaf longevity, instantaneous photosynthetic rate, lifetime leaf carbon gain, and the gross primary production of forests. Am. Nat. 168, 373–383 (2006).

    PubMed  Article  Google Scholar 

  33. 33

    Ehleringer, J. R. Changes in leaf characteristics of species along elevational gradients in the Wasatch Front, Utah. Am. J. Bot. 75, 680–689 (1988).

    PubMed  Article  Google Scholar 

  34. 34

    Moles, A. T. et al. Which is a better predictor of plant traits: temperature or precipitation? J. Veg. Sci. 25, 1167–1180 (2014).

    Article  Google Scholar 

  35. 35

    Leigh, A. et al. Do thick leaves avoid thermal damage in critically low wind speeds? New Phytol. 194, 477–487 (2012).

    CAS  PubMed  Article  Google Scholar 

  36. 36

    Vogel, S. Leaves in the lowest and highest winds: temperature, force and shape. New Phytol. 183, 13–26 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  37. 37

    Song, X., Barbour, M. M., Saurer, M. & Helliker, B. R. Examining the large-scale convergence of photosynthesis-weighted tree leaf temperatures through stable oxygen isotope analysis of multiple data sets. New Phytol. 192, 912–924 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38

    Barbour, M. M., Andrews, T. J. & Farquhar, G. D. Correlations between oxygen isotope ratios of wood constituents of Quercus and Pinus samples from around the world. Funct. Plant Biol. 28, 335–348 (2001).

    CAS  Article  Google Scholar 

  39. 39

    Saurer, M., Schweingruber, F., Vaganov, E. A., Shiyatov, S. G. & Siegwolf, R. Spatial and temporal oxygen isotope trends at the northern tree-line in Eurasia. Geophys. Res. Lett. 29, 7-1–7-4 (2002).

    Article  Google Scholar 

  40. 40

    Evans, M. N. & Schrag, D. P. A stable isotope-based approach to tropical dendroclimatology. Geochim. Cosmochim. Acta 68, 3295–3305 (2004).

    CAS  Article  Google Scholar 

  41. 41

    Poussart, P. F., Evans, M. N. & Schrag, D. P. Resolving seasonality in tropical trees: multi-decade, high-resolution oxygen and carbon isotope records from Indonesia and Thailand. Earth Planet. Sci. Lett. 218, 301–316 (2004).

    CAS  Article  Google Scholar 

  42. 42

    Poussart, P. F. & Schrag, D. P. Seasonally resolved stable isotope chronologies from northern Thailand deciduous trees. Earth Planet. Sci. Lett. 235, 752–765 (2005).

    CAS  Article  Google Scholar 

  43. 43

    Flanagan, L. B. & Farquhar, G. D. Variation in the carbon and oxygen isotope composition of plant biomass and its relationship to water-use efficiency at the leaf- and ecosystem-scales in a northern Great Plains grassland. Plant Cell Environ. 37, 425–438 (2014).

    CAS  PubMed  Article  Google Scholar 

  44. 44

    Barbour, M. M. & Farquhar, G. D. Relative humidity- and ABA-induced variation in carbon and oxygen isotope ratios of cotton leaves. Plant Cell Environ. 23, 473–485 (2000).

    CAS  Article  Google Scholar 

  45. 45

    Boyle, B. et al. The taxonomic name resolution service: an online tool for automated standardization of plant names. BMC Bioinform. 14, 1–15 (2013).

    Article  Google Scholar 

  46. 46

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article  Google Scholar 

  47. 47

    Paw U, K. T. Mathematical analysis of the operative temperature and energy budget. J. Therm. Biol. 12, 227–233 (1987).

    Article  Google Scholar 

  48. 48

    Tracy, C. R. et al. Errors resulting from linear approximations in energy balance equations. J. Therm. Biol. 9, 261–264 (1984).

    Article  Google Scholar 

  49. 49

    Paw U, K. T. & Gao, W. Applications of solutions to non-linear energy budget equations. Agric. Forest Meteorol. 43, 121–145 (1988).

    Article  Google Scholar 

  50. 50

    Widmoser, P. A discussion on and alternative to the Penman–Monteith equation. Agric. Water Manag. 96, 711–721 (2009).

    Article  Google Scholar 

  51. 51

    Jones, H. G. Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology (Cambridge Univ. Press, 2014).

    Google Scholar 

  52. 52

    Gates, D. M. Biophysical Ecology (Springer-Verlag, 1980).

    Book  Google Scholar 

  53. 53

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2014).

  54. 54

    Campbell, G. S. & Norman, J. M. An Introduction to Environmental Biophysics (Springer, 1998).

    Book  Google Scholar 

  55. 55

    Bergman, T. L., Lavine, A. S., Incropera, F. P. & DeWitt, D. P. Fundamentals of Heat and Mass Transfer 7th edn (John Wiley, 2011).

    Google Scholar 

  56. 56

    Goff, J. A. & Gratch, S. Low-pressure properties of water from −160 to 212 °F. Trans. Am. Soc. Heat. Vent. Eng. 51, 125–164 (1946).

    Google Scholar 

  57. 57

    Michaletz, S. T. & Johnson, E. A. Foliage influences forced convection heat transfer in conifer branches and buds. New Phytol. 170, 87–98 (2006).

    CAS  PubMed  Article  Google Scholar 

Download references


This paper is dedicated to the memory of Dr David M. Gates, who began studying the thermoregulation and energy budgets of leaves more than a half century ago. The authors thank B. Blonder for providing thoughtful comments on an earlier version of the paper, L. Stockton for helping collect leaf trait and gas exchange data, H. Adams, A. Collins, T. Dickman, C. Grossiord, A. Henderson, J. Reithel and S. Sevanto for providing meteorological and phenological data, and J. Finch and J. Draper for supplying the Brachypodium distachyon image used in Fig. 1. S.T.M. was supported by a Director's Fellowship from the Los Alamos National Laboratory. S.T.M., M.D.W., J.Z., M.K. and B.J.E. were supported by NSF MacroSystems award 1065861. B.R.H. was supported under NSF award IOS-0950998 and NSF MacroSystems award 1241873. N.G.M. was supported by SUMO and NGEE-Tropics support from the Department of Energy, Office of Science. B.J.E. was supported by a fellowship from the Aspen Center for Environmental Studies.

Author information




S.T.M., M.D.W., N.G.M., J.Z., M.K., B.R.H. and B.J.E. compiled data, developed theory, performed analyses and wrote the paper.

Corresponding author

Correspondence to Sean T. Michaletz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Additional theory, Supplementary references, Supplementary Figs 1-4 and Supplementary Tables 1-3. (PDF 786 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Michaletz, S., Weiser, M., McDowell, N. et al. The energetic and carbon economic origins of leaf thermoregulation. Nature Plants 2, 16129 (2016).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing