Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Transgressive phenotypes and generalist pollination in the floral evolution of Nicotiana polyploids


Polyploidy is an important driving force in angiosperm evolution, and much research has focused on genetic, epigenetic and transcriptomic responses to allopolyploidy. Nicotiana is an excellent system in which to study allopolyploidy because half of the species are allotetraploids of different ages, allowing us to examine the trajectory of floral evolution over time. Here, we study the effects of allopolyploidy on floral morphology in Nicotiana, using corolla tube measurements and geometric morphometrics to quantify petal shape. We show that polyploid morphological divergence from the intermediate phenotype expected (based on progenitor morphology) increases with time for floral limb shape and tube length, and that most polyploids are distinct or transgressive in at least one trait. In addition, we show that polyploids tend to evolve shorter and wider corolla tubes, suggesting that allopolyploidy could provide an escape from specialist pollination via reversion to more generalist pollination strategies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Side and front floral morphology of N. tabacum and section Polydicliae polyploids and their diploid progenitors.
Figure 2: Distribution of Nicotiana accessions in the floral limb shape morphospace and in tube length and width.
Figure 3: Allotetraploid sections and their diploid progenitors in the floral limb morphospace and in tube length and width.
Figure 4: Directional distance of polyploid means from the progenitor midpoint in floral limb shape and corolla tube length and width.
Figure 5: Distance from the polyploid mean to the progenitor midpoint against estimated polyploid age for floral limb shape, corolla tube length and corolla tube width.


  1. 1

    Vanneste, K., Maere, S. & Van de Peer, Y. Tangled up in two: a burst of genome duplications at the end of the Cretaceous and the consequences for plant evolution. Phil. Trans. R. Soc. B 369, 20130353 (2014).

    Google Scholar 

  2. 2

    Soltis, D. E., Visger, C. J. & Soltis, P. S. The polyploidy revolution then…and now: Stebbins revisited. Am. J. Bot. 101, 1057–1078 (2014).

    Google Scholar 

  3. 3

    Jiao, Y. et al. A genome triplication associated with early diversification of the core eudicots. Genome Biol. 13, R3 (2012).

    Google Scholar 

  4. 4

    Jiao, Y. et al. Ancestral polyploidy in seed plants and angiosperms. Nature 473, 97–100 (2011).

    Google Scholar 

  5. 5

    Renny-Byfield, S. & Wendel, J. F. Doubling down on genomes: polyploidy and crop plants. Am. J. Bot. 101, 1711–1725 (2014).

    Google Scholar 

  6. 6

    Campbell, D. R., Waser, N. M. & Melendez-Ackerman, E. J. Analyzing pollinator-mediated selection in a plant hybrid zone: hummingbird visitation patterns on three spatial scales. Am. Nat. 149, 295–315 (1997).

    Google Scholar 

  7. 7

    Melendez-Ackerman, E. & Campbell, D. R. Adaptive significance of flower color and inter-trait correlations in an Ipomopsis hybrid zone. Evolution 52, 1293–1303 (1998).

    Google Scholar 

  8. 8

    Sletvold, N. & Agren, J. Pollinator-mediated selection on floral display and spur length in the orchid Gymnadenia conopsea. Int. J. Plant Sci. 9, 999–1009 (2010).

    Google Scholar 

  9. 9

    Fenster, C. B. Selection on floral morphology by hummingbirds. Biotropica 23, 98–101 (1991).

    Google Scholar 

  10. 10

    Castellanos, M. C., Wilson, P. & Thomson, J. D. ‘Anti-bee’ and ‘pro-bird’ changes during the evolution of hummingbird pollination in Penstemon flowers. J. Evol. Biol. 17, 876–885 (2004).

    Google Scholar 

  11. 11

    Gomez, J. M. et al. Spatial variation in selection on corolla shape in a generalist plant is promoted by the preference patterns of its local pollinators. Proc. R. Soc. B 275, 2241–2249 (2008).

    Google Scholar 

  12. 12

    Bissell, E. K. & Diggle, P. K. Modular genetic architecture of floral morphology in Nicotiana: quantitative genetic and comparative phenotypic approaches to floral integration. J. Evol. Biol. 23, 1744–1758 (2010).

    Google Scholar 

  13. 13

    Rieseberg, L. H. & Willis, J. H. Plant speciation. Science 317, 910–914 (2007).

    Google Scholar 

  14. 14

    Venail, J., Dell'Olivo, A. & Kuhlemeier, C. Speciation genes in the genus Petunia. Phil. Trans. R. Soc. B 365, 461–468 (2010).

    Google Scholar 

  15. 15

    Segraves, K. A. & Thompson, J. N. Plant polyploidy and pollination: floral traits and insect visits to diploid and tetraploid Heuchera grossulariifolia. Evolution 53, 1114–1127 (1999).

    Google Scholar 

  16. 16

    Clarkson, J. J. et al. Long-term genome diploidization in allopolyploid Nicotiana section Repandae (Solanaceae). New Phytol. 168, 241–252 (2005).

    Google Scholar 

  17. 17

    Leitch, I. J. et al. The ups and downs of genome size evolution in polyploid species of Nicotiana (Solanaceae). Ann. Bot. 101, 805–814 (2008).

    Google Scholar 

  18. 18

    Chase, M. W. et al. Molecular systematics, GISH and the origin of hybrid taxa in Nicotiana (Solanaceae). Ann. Bot. 92, 107–127 (2003).

    Google Scholar 

  19. 19

    Clarkson, J. J., Kelly, L. J., Leitch, A. R., Knapp, S. & Chase, M. W. Nuclear glutamine synthetase evolution in Nicotiana: phylogenetics and the origins of allotetraploid and homoploid (diploid) hybrids. Mol. Phylogenet. Evol. 55, 99–112 (2010).

    Google Scholar 

  20. 20

    Clarkson, J. J. et al. Phylogenetic relationships in Nicotiana (Solanaceae) inferred from multiple plastid DNA regions. Mol. Phylogenet. Evol. 33, 75–90 (2004).

    Google Scholar 

  21. 21

    Kelly, L. J., Leitch, A. R., Clarkson, J. J., Knapp, S. & Chase, M. W. Reconstructing the complex origin of wild allotetraploid tobaccos (Nicotiana section Suaveolentes). Evolution 67, 80–94 (2013).

    Google Scholar 

  22. 22

    Bissell, E. K. & Diggle, P. K. Floral morphology in Nicotiana: architectural and temporal effects on phenotypic integration. Int. J. Plant Sci. 169, 225–240 (2008).

    Google Scholar 

  23. 23

    Kelly, L. J. et al. Intragenic recombination events and evidence for hybrid speciation in Nicotiana (Solanaceae). Mol. Biol. Evol. 27, 781–799 (2010).

    Google Scholar 

  24. 24

    Goodspeed, T. H. The Genus Nicotiana (Chronica Botanica, 1954).

    Google Scholar 

  25. 25

    Nilsson, L. A. The evolution of flowers with deep corolla tubes. Nature 334, 147–149 (1988).

    Google Scholar 

  26. 26

    Fulton, M. & Hodges, S. A. Floral isolation between Aquilegia formosa and Aquilegia pubescens. Proc. R. Soc. Lond. B 266, 2247–2252 (1999).

    Google Scholar 

  27. 27

    Darwin, C. On the Various Contrivances by which British and Foreign Orchids are Fertilised by Insects (Murray, 1862).

    Google Scholar 

  28. 28

    Pauw, A., Stofberg, J. & Waterman, R. J. Flies and flowers and Darwin's race. Evolution 63, 268–279 (2009).

    Google Scholar 

  29. 29

    Whittall, J. B. & Hodges, S. A. Pollinator shifts drive increasingly long nectar spurs in columbine flowers. Nature 447, 706–709 (2007).

    Google Scholar 

  30. 30

    Cresswell, J. E. Stabilizing selection and the structural variability of flowers within species. Ann. Bot. 81, 463–473 (1998).

    Google Scholar 

  31. 31

    Nattero, J., Sérsic, A. N. & Cocucci, A. A. Patterns of contemporary phenotypic selection and flower integration in the hummingbird-pollinated Nicotiana glauca between populations with different flower–pollinator combinations. Oikos 119, 852–863 (2010).

    Google Scholar 

  32. 32

    Galen, C. & Cuba, J. Down the tube: pollinators, predators, and the evolution of flower shape in the alpine skypilot, Polemonium viscosum. Evolution 55, 1963–1971 (2001).

    Google Scholar 

  33. 33

    Temeles, E. J., Linhart, Y. B., Masonjones, M. & Masonjones, H. D. The role of flower width in hummingbird bill length-flower length relationships. Biotropica 34, 68–80 (2002).

    Google Scholar 

  34. 34

    Palacios-Vargas, J. G., Llampallas, J. & Hogue, C. L. Preliminary list of the insects and related terrestrial Athropoda of Socorro Island, Islas Revillagigedo, Mexico. Bull. South. Calif. Acad. Sci. 81, 138–147 (1982).

    Google Scholar 

  35. 35

    Hanna, G. D. Expedition to the Revillagigedo Islands, Mexico, in 1925. Proc. Calif. Acad. Sci. XV, 1–113 (1926).

    Google Scholar 

  36. 36

    Hahn, I. J., Hogeback, S., Romer, U. & Vergara, P. M. Biodiversity and biogeography of birds in Pacific Mexico along an isolation gradient from mainland Chamela via coastal Marias to oceanic Revillagigedo Islands. Vertebr. Zool. 62, 123–144 (2012).

    Google Scholar 

  37. 37

    Anthony, A. W. Avifauna of the Revillagigedo Islands. Auk 15, 311–318 (1898).

    Google Scholar 

  38. 38

    De Ibarra, N. H. & Giurfa, M. Discrimination of closed coloured shapes by honeybees requires only contrast to the long wavelength receptor type. Anim. Behav. 66, 903–910 (2003).

    Google Scholar 

  39. 39

    Giurfa, M., Eichmann, B. & Menzel, R. Symmetry perception in an insect. Nature 382, 458–461 (1996).

    Google Scholar 

  40. 40

    Herrera, C. M. Selection on complexity of corolla outline in a hawkmoth-pollinated violet. Evol. Trends Plants 7, 9–13 (1993).

    Google Scholar 

  41. 41

    Lehrer, M. & Campan, R. Generalization of convex shapes by bees: what are shapes made of? J. Exp. Biol. 208, 3233–3247 (2005).

    Google Scholar 

  42. 42

    Kelber, A. Innate preferences for flower features in the hawkmoth Macroglossum stellatarum. J. Exp. Biol. 200, 827–836 (1997).

    Google Scholar 

  43. 43

    Kaczorowski, R. L., Seliger, A. R., Gaskett, A. C., Wigsten, S. K. & Raguso, R. A. Corolla shape vs. size in flower choice by a nocturnal hawkmoth pollinator. Funct. Ecol. 26, 577–587 (2012).

    Google Scholar 

  44. 44

    Stang, M., Klinkhamer, P. G. L. & Van Der Meijden, E. Size constraints and flower abundance determine the number of interactions in a plant–flower visitor web. Oikos 112, 111–121 (2006).

    Google Scholar 

  45. 45

    Bond, W. J. Do mutualisms matter? Assessing the impact of pollinator and disperser disruption on plant extinction. Phil. Trans. R. Soc. Lond. B 344, 83–90 (1994).

    Google Scholar 

  46. 46

    Zayed, A. et al. Increased genetic differentiation in a specialist versus a generalist bee: implications for conservation. Conserv. Genet. 6, 1017–1026 (2005).

    Google Scholar 

  47. 47

    Johnson, S. D. & Steiner, K. E. Generalization versus specialization in plant pollination systems. Trends Ecol. Evol. 15, 140–143 (2000).

    Google Scholar 

  48. 48

    Wilson, P., Castellanos, M. C., Wolfe, A. D. & Thomson, J. D. in Plant–Pollinator Interactions: From Specialization to Generalization (eds Waser, N. M. & Ollerton, J. ) 47–68 (Univ. Chicago Press, 2006).

    Google Scholar 

  49. 49

    Tripp, E. A. & Manos, P. S. Is floral specialization an evolutionary dead-end? Pollination system transitions in Ruellia (Acanthaceae). Evolution 62, 1712–1736 (2008).

    Google Scholar 

  50. 50

    Day, E. H., Hua, X. & Bromham, L. Is specialization and evolutionary dead end? Testing for differences in speciation, extinction and trait transition rates across diverse phylogenies of specialists and generalists. J. Evol. Biol. 29, 1257–1267 (2016).

    Google Scholar 

  51. 51

    Vamosi, J. C., Armbruster, W. S. & Renner, S. S. Evolutionary ecology of specialization: insights from phylogenetic analysis. Proc. R. Soc. B 281, 20142004 (2014).

    Google Scholar 

  52. 52

    Rohlf, J. F. tps Utility Program (SUNY, 2006).

  53. 53

    Rohlf, J. F. tpsDig Program (SUNY, 2006).

  54. 54

    Rohlf, J. F. Relative Warps (SUNY, 2006).

  55. 55

    ImageJ (US National Institutes of Health, 1997–2010).

  56. 56

    Burk, L. G. Partial self-fertility in a theoretical amphiploid progenitor of N. tabacum. J Hered. 64, 348–350 (1973).

    Google Scholar 

  57. 57

    Moon, H. S., Nicholson, J. S. & Lewis, R. S. Use of transferable Nicotiana tabacum L. microsatellite markers for investigating genetic diversity in the genus Nicotiana. Genome 51, 547–559 (2008).

    Google Scholar 

  58. 58

    Clarkson, J. J. Nicotiana (Solanaceae): Insights from Molecular Phylogenetics and Cytogenetics PhD thesis, Queen Mary Univ. London (2006).

  59. 59

    Anssour, S. et al. Phenotypic, genetic and genomic consequences of natural and synthetic polyploidization of Nicotiana attenuata and Nicotiana obtusifolia. Ann. Bot. 103, 1207–1217 (2009).

    Google Scholar 

Download references


We thank K. Yoong Lim, A. Kovařík, C. Mhiri and I. T. Baldwin for providing us with synthetic polyploids and homoploids. This work was supported by the Natural Environment Research Council (NE/C511964/1 to A.R.L. and M.C.) and the Overseas Research Students Awards Scheme to E.W.M.

Author information




E.M., M.C., S.K., A.R.L. and S.L. designed the research. E.M. collected the data and performed most of the analyses. S.L. performed analyses in Mathematica. E.M., A.R.L. and S.L. wrote the manuscript with help from M.C., S.K. and A.L.

Corresponding author

Correspondence to Steven C. Le Comber.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1-3 and Supplementary Table 1. (PDF 2193 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McCarthy, E., Chase, M., Knapp, S. et al. Transgressive phenotypes and generalist pollination in the floral evolution of Nicotiana polyploids. Nature Plants 2, 16119 (2016).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing