Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Plant synthetic biology for molecular engineering of signalling and development

Abstract

Molecular genetic studies of model plants in the past few decades have identified many key genes and pathways controlling development, metabolism and environmental responses. Recent technological and informatics advances have led to unprecedented volumes of data that may uncover underlying principles of plants as biological systems. The newly emerged discipline of synthetic biology and related molecular engineering approaches is built on this strong foundation. Today, plant regulatory pathways can be reconstituted in heterologous organisms to identify and manipulate parameters influencing signalling outputs. Moreover, regulatory circuits that include receptors, ligands, signal transduction components, epigenetic machinery and molecular motors can be engineered and introduced into plants to create novel traits in a predictive manner. Here, we provide a brief history of plant synthetic biology and significant recent examples of this approach, focusing on how knowledge generated by the reference plant Arabidopsis thaliana has contributed to the rapid rise of this new discipline, and discuss potential future directions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: A schematic diagram of an idealized plant cell with synthetic engineered pathways to produce a plant with ideal traits and functionality.
Figure 2: An engineered ABA receptor can perceive a fungicide and trigger an ABA response.
Figure 3: Mode of action of YLG.
Figure 4: A synthetic epigenetic timer for gene expression.

References

  1. 1

    The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000).

  2. 2

    Medford, J. I. & Prasad, A. Plant synthetic biology takes root. Science 346, 162–163 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  3. 3

    Purnick, P. E. & Weiss, R. The second wave of synthetic biology: from modules to systems. Nature Rev. Mol. Cell Biol. 10, 410–422 (2009).

    CAS  Article  Google Scholar 

  4. 4

    Huang, H. H., Camsund, D., Lindblad, P. & Heidorn, T. Design and characterization of molecular tools for a synthetic biology approach towards developing cyanobacterial biotechnology. Nucleic Acids Res. 38, 2577–2593 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5

    Jensen, P. E. & Leister, D. Cyanobacteria as an experimental platform for modifying bacterial and plant photosynthesis. Front. Bioeng. Biotechnol. 2, 7 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  6. 6

    Liu, W. & Stewart, C. N. Jr Plant synthetic biology. Trends Plant Sci. 20, 309–317 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7

    Farre, G., Twyman, R. M., Christou, P., Capell, T. & Zhu, C. Knowledge-driven approaches for engineering complex metabolic pathways in plants. Curr. Opin. Biotechnol. 32, 54–60 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8

    Thodey, K., Galanie, S. & Smolke, C. D. A microbial biomanufacturing platform for natural and semisynthetic opioids. Nature Chem. Biol. 10, 837–844 (2014).

    CAS  Article  Google Scholar 

  9. 9

    Zirpel, B., Stehle, F. & Kayser, O. Production of Δ9-tetrahydrocannabinolic acid from cannabigerolic acid by whole cells of Pichia (Komagataella) pastoris expressing Δ9-tetrahydrocannabinolic acid synthase from Cannabis sativa L. Biotechnol. Lett. 37, 1869–1875 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10

    Doty, S. L. et al. Enhanced metabolism of halogenated hydrocarbons in transgenic plants containing mammalian cytochrome P450 2E1. Proc. Natl Acad. Sci. USA 97, 6287–6291 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11

    Doty, S. L. et al. Enhanced phytoremediation of volatile environmental pollutants with transgenic trees. Proc. Natl Acad. Sci. USA 104, 16816–16821 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12

    Yuan, L., Kurek, I., English, J. & Keenan, R. Laboratory-directed protein evolution. Microbiol. Mol. Biol. Rev. 69, 373–392 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13

    Lehmann, M. & Wyss, M. Engineering proteins for thermostability: the use of sequence alignments versus rational design and directed evolution. Curr. Opin. Biotechnol. 12, 371–375 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14

    Bornscheuer, U. T. & Pohl, M. Improved biocatalysts by directed evolution and rational protein design. Curr. Opin. Chem. Biol. 5, 137–143 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15

    Schindler, T. D., Chen, L., Lebel, P., Nakamura, M. & Bryant, Z. Engineering myosins for long-range transport on actin filaments. Nature Nanotechnol. 9, 33–38 (2014).

    CAS  Article  Google Scholar 

  16. 16

    Voigt, C. A., Mayo, S. L., Arnold, F. H. & Wang, Z. G. Computational method to reduce the search space for directed protein evolution. Proc. Natl Acad. Sci. USA 98, 3778–3783 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17

    Antunes, M. S. et al. Programmable ligand detection system in plants through a synthetic signal transduction pathway. PLOS ONE 6, e16292 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18

    Stock, A. M., Robinson, V. L. & Goudreau, P. N. Two-component signal transduction. Annu. Rev. Biochem. 69, 183–215 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19

    Antunes, M. S. et al. A synthetic de-greening gene circuit provides a reporting system that is remotely detectable and has a re-set capacity. Plant Biotechnol. J. 4, 605–622 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20

    Chang, C., Kwok, S. F., Bleecker, A. B. & Meyerowitz, E. M. Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262, 539–544 (1993).

    CAS  PubMed  Article  Google Scholar 

  21. 21

    Kakimoto, T. CKI1, a histidine kinase homolog implicated in cytokinin signal transduction. Science 274, 982–985 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22

    Imamura, A. et al. Response regulators implicated in His-to-Asp phosphotransfer signaling in Arabidopsis. Proc. Natl Acad. Sci. USA 95, 2691–2696 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23

    Inoue, T. et al. Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature 409, 1060–1063 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24

    To, J. P. et al. Cytokinin regulates type-A Arabidopsis response regulator activity and protein stability via two-component phosphorelay. Plant Cell 19, 3901–3914 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25

    Tan, X. et al. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446, 640–645 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26

    Shimada, A. et al. Structural basis for gibberellin recognition by its receptor GID1. Nature 456, 520–523 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27

    Nishimura, N. et al. Structural mechanism of abscisic acid binding and signaling by dimeric PYR1. Science 326, 1373–1379 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28

    Santiago, J. et al. The abscisic acid receptor PYR1 in complex with abscisic acid. Nature 462, 665–668 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29

    Miyazono, K. et al. Structural basis of abscisic acid signalling. Nature 462, 609–614 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30

    Sheard, L. B. et al. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468, 400–405 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31

    Hothorn, M. et al. Structural basis of steroid hormone perception by the receptor kinase BRI1. Nature 474, 467–471 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32

    She, J. et al. Structural insight into brassinosteroid perception by BRI1. Nature 474, 472–476 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33

    Sun, Y. et al. Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex. Science 342, 624–628 (2013).

    CAS  Article  Google Scholar 

  34. 34

    Brunoud, G. et al. A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature 482, 103–106 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35

    Liao, C. Y. et al. Reporters for sensitive and quantitative measurement of auxin response. Nature Methods 12, 207–210 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36

    Larrieu, A. et al. A fluorescent hormone biosensor reveals the dynamics of jasmonate signalling in plants. Nature Commun. 6, 6043 (2015).

    CAS  Article  Google Scholar 

  37. 37

    Jones, A. M. et al. Abscisic acid dynamics in roots detected with genetically encoded FRET sensors. Elife 3, e01741 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  38. 38

    Waadt, R. et al. FRET-based reporters for the direct visualization of abscisic acid concentration changes and distribution in Arabidopsis. Elife 3, e01739 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  39. 39

    Park, S. Y. et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324, 1068–1071 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Peterson, F. C. et al. Structural basis for selective activation of ABA receptors. Nature Struct. Mol. Biol. 17, 1109–1113 (2010).

    CAS  Article  Google Scholar 

  41. 41

    Park, S. Y. et al. Agrochemical control of plant water use using engineered abscisic acid receptors. Nature 23, 545–548 (2015).

    Article  CAS  Google Scholar 

  42. 42

    Thornton, J. W. Resurrecting ancient genes: experimental analysis of extinct molecules. Nature Rev. Genet. 5, 366–375 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43

    Harms, M. J. & Thornton, J. W. Analyzing protein structure and function using ancestral gene reconstruction. Curr. Opin. Struct. Biol. 20, 360–366 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44

    Nelson, D. C. et al. F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 108, 8897–8902 (2011).

    CAS  PubMed  Article  Google Scholar 

  45. 45

    Waters, M. T. et al. Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis. Development 139, 1285–1295 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46

    Delaux, P. M. et al. Origin of strigolactones in the green lineage. New Phytol. 195, 857–871 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47

    Toth, R. & van der Hoorn, R. A. Emerging principles in plant chemical genetics. Trends Plant Sci. 15, 81–88 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48

    Blackwell, H. E. & Zhao, Y. Chemical genetic approaches to plant biology. Plant Physiol. 133, 448–455 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49

    Hayashi, K. et al. Small-molecule agonists and antagonists of F-box protein–substrate interactions in auxin perception and signaling. Proc. Natl Acad. Sci. USA 105, 5632–5637 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50

    Takeuchi, J. et al. Designed abscisic acid analogs as antagonists of PYL-PP2C receptor interactions. Nature Chem. Biol. 10, 477–482 (2014).

    CAS  Article  Google Scholar 

  51. 51

    Shani, E. et al. Gibberellins accumulate in the elongating endodermal cells of Arabidopsis root. Proc. Natl Acad. Sci. USA 110, 4834–4839 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. 52

    Irani, N. G. et al. Fluorescent castasterone reveals BRI1 signaling from the plasma membrane. Nature Chem. Biol. 8, 583–589 (2012).

    CAS  Article  Google Scholar 

  53. 53

    Tsuda, E. et al. Alkoxy-auxins are selective inhibitors of auxin transport mediated by PIN, ABCB, and AUX1 transporters. J. Biol. Chem. 286, 2354–2364 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54

    Hayashi, K. et al. Auxin transport sites are visualized in planta using fluorescent auxin analogs. Proc. Natl Acad. Sci. USA 111, 11557–11562 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55

    Rasmussen, A. et al. A fluorescent alternative to the synthetic strigolactone GR24. Mol. Plant 6, 100–112 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56

    Tsuchiya, Y. et al. strigolactone receptors in Striga hermonthica with fluorescence. Science 349, 846–848 (2015).

    Article  CAS  Google Scholar 

  57. 57

    Schaumberg, K. A. et al. Quantitative characterization of genetic parts and circuits for plant synthetic biology. Nature Methods 13, 94–100 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. 58

    Ishizaki, K., Nishihama, R., Yamato, K. T. & Kohchi, T. Molecular genetic tools and techniques for Marchantia polymorpha research. Plant Cell Physiol. http://dx.doi.org/10.1093/pcp/pcv097 (2015).

  59. 59

    Vernoux, T. et al. The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Mol. Syst. Biol. 7, 508 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  60. 60

    Prigge, M. J. & Bezanilla, M. Evolutionary crossroads in developmental biology: Physcomitrella patens. Development 137, 3535–3543 (2010).

    CAS  PubMed  Article  Google Scholar 

  61. 61

    Sun, B., Xu, Y., Ng, K. H. & Ito, T. A timing mechanism for stem cell maintenance and differentiation in the Arabidopsis floral meristem. Genes Dev. 23, 1791–1804 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62

    Sun, B. et al. Timing mechanism dependent on cell division is invoked by Polycomb eviction in plant stem cells. Science 343, 1248559 (2014).

    Article  CAS  Google Scholar 

  63. 63

    Wu, M.-F. et al. Auxin-regulated chromatin switch directs acquisition of flower primordium founder fate. eLife 4, e09269 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  64. 64

    Hashimoto, T. Microtubules in plants. Arabidopsis Book 13, e0179 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  65. 65

    Meagher, R. B. & Fechheimer, M. The Arabidopsis cytoskeletal genome. Arabidopsis Book 2, e0096 (2003).

    PubMed  PubMed Central  Article  Google Scholar 

  66. 66

    Smith, L. G. & Oppenheimer, D. G. Spatial control of cell expansion by the plant cytoskeleton. Annu. Rev. Cell Dev. Biol. 21, 271–295 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  67. 67

    Gutierrez, R., Lindeboom, J. J., Paredez, A. R., Emons, A. M. & Ehrhardt, D. W. Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nature Cell Biol. 11, 797–806 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  68. 68

    Li, S., Bashline, L., Lei, L. & Gu, Y. Cellulose synthesis and its regulation. Arabidopsis Book 12, e0169 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  69. 69

    Morimatsu, M. et al. The molecular structure of the fastest myosin from green algae, Chara. Biochem. Biophys. Res. Commun. 270, 147–152 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  70. 70

    Tominaga, M. et al. Cytoplasmic streaming velocity as a plant size determinant. Dev. Cell 27, 345–352 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. 71

    Shcherbakova, D. M., Shemetov, A. A., Kaberniuk, A. A. & Verkhusha, V. V. Natural photoreceptors as a source of fluorescent proteins, biosensors, and optogenetic tools. Annu. Rev. Biochem. 84, 519–550 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. 72

    Sorokina, O. et al. A switchable light-input, light-output system modelled and constructed in yeast. J. Biol. Eng. 3, 15 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  73. 73

    Kennedy, M. J. et al. Rapid blue-light-mediated induction of protein interactions in living cells. Nature Methods 7, 973–975 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. 74

    Shimizu-Sato, S., Huq, E., Tepperman, J. M. & Quail, P. H. A light-switchable gene promoter system. Nature Biotechnol. 20, 1041–1044 (2002).

    CAS  Article  Google Scholar 

  75. 75

    Tyszkiewicz, A. B. & Muir, T. W. Activation of protein splicing with light in yeast. Nature Methods 5, 303–305 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  76. 76

    Wong, S., Mosabbir, A. A. & Truong, K. An engineered split intein for photoactivated protein trans-splicing. PLoS ONE 10, e0135965 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  77. 77

    Beyer, H. M. et al. Red light-regulated reversible nuclear localization of proteins in mammalian cells and zebrafish. ACS Synth. Biol. 4, 951–958 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  78. 78

    Nishimura, K., Fukagawa, T., Takisawa, H., Kakimoto, T. & Kanemaki, M. An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nature Methods 6, 917–922 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  79. 79

    Havens, K. A. et al. A synthetic approach reveals extensive tunability of auxin signaling. Plant Physiol. 160, 135–142 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80

    Zhang, L., Ward, J. D., Cheng, Z. & Dernburg, A. F. The auxin-inducible degradation (AID) system enables versatile conditional protein depletion in C. elegans. Development 142, 4374–4384 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. 81

    Liang, F. S., Ho, W. Q. & Crabtree, G. R. Engineering the ABA plant stress pathway for regulation of induced proximity. Sci. Signal. 4, rs2 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  82. 82

    Khakhar, A., Bolten, N. J., Nemhauser, J. & Klavins, E. Cell–cell communication in yeast using auxin biosynthesis and auxin responsive CRISPR transcription factors. ACS Synth. Biol. http://dx.doi.org/10.1021/acssynbio.5b00064 (2015).

  83. 83

    Pierre-Jerome, E., Jang, S. S., Havens, K. A., Nemhauser, J. L. & Klavins, E. Recapitulation of the forward nuclear auxin response pathway in yeast. Proc. Natl Acad. Sci. USA 111, 9407–9412 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  84. 84

    Guseman, J. M. et al. Auxin-induced degradation dynamics set the pace for lateral root development. Development 142, 905–909 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. 85

    Ort, D. R. et al. Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc. Natl Acad. Sci. USA 112, 8529–8536 (2015).

    CAS  Article  Google Scholar 

  86. 86

    Jiang, W. et al. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res. 41, e188 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. 87

    Baltes, N. J., Gil-Humanes, J., Cermak, T., Atkins, P. A. & Voytas, D. F. DNA replicons for plant genome engineering. Plant Cell 26, 151–163 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. 88

    Wu, H. Y. et al. AGROBEST: an efficient Agrobacterium-mediated transient expression method for versatile gene function analyses in Arabidopsis seedlings. Plant Methods 10, 19 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  89. 89

    Fahlgren, N., Gehan, M. A. & Baxter, I. Lights, camera, action: high-throughput plant phenotyping is ready for a close-up. Curr. Opin. Plant Biol. 24C, 93–99 (2015).

    Article  Google Scholar 

  90. 90

    Yordanov, B. et al. A computational method for automated characterization of genetic components. ACS Synth. Biol. 3, 578–588 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  91. 91

    Jang, S. S., Oishi, K. T., Egbert, R. G. & Klavins, E. Specification and simulation of synthetic multicelled behaviors. ACS Synth. Biol. 1, 365–374 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  92. 92

    Fernandez-Castane, A., Feher, T., Carbonell, P., Pauthenier, C. & Faulon, J. L. Computer-aided design for metabolic engineering. J. Biotechnol. 192, 302–313 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  93. 93

    Oberortner, E. & Densmore, D. Web-based software tool for constraint-based design specification of synthetic biological systems. ACS Synth. Biol. 4, 757–760 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  94. 94

    Stevens, J. T. & Myers, C. J. Dynamic modeling of cellular populations within iBioSim. ACS Synth. Biol. 2, 223–229 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. Wagner (Univ. Pennsylvania, USA) for sharing unpublished materials; S. Hagihara, M. Yoshimura and K. Itami (Institute of Transformative Biomolecules (ITbM), Nagoya Univ., Japan) for providing diagrams and unpublished Striga seedling images for Fig. 3; H. Hirukawa and S. Hagihara (ITbM) for the illustrations for Figs 1 and 3; and M. Maes (Univ. Washington, USA) for proofreading. Funding for synthetic biology research in J.L.N.'s laboratory is provided by the National Institute of Health (R01 GM107084) and the National Science Foundation (MCB-1411949). K.U.T. is an investigator of Howard Hughes Medical Institute and Gordon and Betty Moore Foundation (HHMI-GBMF), and her group is supported by a grant (GBMF3035).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Jennifer L. Nemhauser or Keiko U. Torii.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nemhauser, J., Torii, K. Plant synthetic biology for molecular engineering of signalling and development. Nature Plants 2, 16010 (2016). https://doi.org/10.1038/nplants.2016.10

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing