Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Plant synthetic biology for molecular engineering of signalling and development

Abstract

Molecular genetic studies of model plants in the past few decades have identified many key genes and pathways controlling development, metabolism and environmental responses. Recent technological and informatics advances have led to unprecedented volumes of data that may uncover underlying principles of plants as biological systems. The newly emerged discipline of synthetic biology and related molecular engineering approaches is built on this strong foundation. Today, plant regulatory pathways can be reconstituted in heterologous organisms to identify and manipulate parameters influencing signalling outputs. Moreover, regulatory circuits that include receptors, ligands, signal transduction components, epigenetic machinery and molecular motors can be engineered and introduced into plants to create novel traits in a predictive manner. Here, we provide a brief history of plant synthetic biology and significant recent examples of this approach, focusing on how knowledge generated by the reference plant Arabidopsis thaliana has contributed to the rapid rise of this new discipline, and discuss potential future directions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic diagram of an idealized plant cell with synthetic engineered pathways to produce a plant with ideal traits and functionality.
Figure 2: An engineered ABA receptor can perceive a fungicide and trigger an ABA response.
Figure 3: Mode of action of YLG.
Figure 4: A synthetic epigenetic timer for gene expression.

Similar content being viewed by others

References

  1. The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000).

  2. Medford, J. I. & Prasad, A. Plant synthetic biology takes root. Science 346, 162–163 (2014).

    Article  PubMed  Google Scholar 

  3. Purnick, P. E. & Weiss, R. The second wave of synthetic biology: from modules to systems. Nature Rev. Mol. Cell Biol. 10, 410–422 (2009).

    Article  CAS  Google Scholar 

  4. Huang, H. H., Camsund, D., Lindblad, P. & Heidorn, T. Design and characterization of molecular tools for a synthetic biology approach towards developing cyanobacterial biotechnology. Nucleic Acids Res. 38, 2577–2593 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jensen, P. E. & Leister, D. Cyanobacteria as an experimental platform for modifying bacterial and plant photosynthesis. Front. Bioeng. Biotechnol. 2, 7 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Liu, W. & Stewart, C. N. Jr Plant synthetic biology. Trends Plant Sci. 20, 309–317 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Farre, G., Twyman, R. M., Christou, P., Capell, T. & Zhu, C. Knowledge-driven approaches for engineering complex metabolic pathways in plants. Curr. Opin. Biotechnol. 32, 54–60 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Thodey, K., Galanie, S. & Smolke, C. D. A microbial biomanufacturing platform for natural and semisynthetic opioids. Nature Chem. Biol. 10, 837–844 (2014).

    Article  CAS  Google Scholar 

  9. Zirpel, B., Stehle, F. & Kayser, O. Production of Δ9-tetrahydrocannabinolic acid from cannabigerolic acid by whole cells of Pichia (Komagataella) pastoris expressing Δ9-tetrahydrocannabinolic acid synthase from Cannabis sativa L. Biotechnol. Lett. 37, 1869–1875 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Doty, S. L. et al. Enhanced metabolism of halogenated hydrocarbons in transgenic plants containing mammalian cytochrome P450 2E1. Proc. Natl Acad. Sci. USA 97, 6287–6291 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Doty, S. L. et al. Enhanced phytoremediation of volatile environmental pollutants with transgenic trees. Proc. Natl Acad. Sci. USA 104, 16816–16821 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yuan, L., Kurek, I., English, J. & Keenan, R. Laboratory-directed protein evolution. Microbiol. Mol. Biol. Rev. 69, 373–392 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lehmann, M. & Wyss, M. Engineering proteins for thermostability: the use of sequence alignments versus rational design and directed evolution. Curr. Opin. Biotechnol. 12, 371–375 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Bornscheuer, U. T. & Pohl, M. Improved biocatalysts by directed evolution and rational protein design. Curr. Opin. Chem. Biol. 5, 137–143 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Schindler, T. D., Chen, L., Lebel, P., Nakamura, M. & Bryant, Z. Engineering myosins for long-range transport on actin filaments. Nature Nanotechnol. 9, 33–38 (2014).

    Article  CAS  Google Scholar 

  16. Voigt, C. A., Mayo, S. L., Arnold, F. H. & Wang, Z. G. Computational method to reduce the search space for directed protein evolution. Proc. Natl Acad. Sci. USA 98, 3778–3783 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Antunes, M. S. et al. Programmable ligand detection system in plants through a synthetic signal transduction pathway. PLOS ONE 6, e16292 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stock, A. M., Robinson, V. L. & Goudreau, P. N. Two-component signal transduction. Annu. Rev. Biochem. 69, 183–215 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Antunes, M. S. et al. A synthetic de-greening gene circuit provides a reporting system that is remotely detectable and has a re-set capacity. Plant Biotechnol. J. 4, 605–622 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Chang, C., Kwok, S. F., Bleecker, A. B. & Meyerowitz, E. M. Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262, 539–544 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Kakimoto, T. CKI1, a histidine kinase homolog implicated in cytokinin signal transduction. Science 274, 982–985 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Imamura, A. et al. Response regulators implicated in His-to-Asp phosphotransfer signaling in Arabidopsis. Proc. Natl Acad. Sci. USA 95, 2691–2696 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Inoue, T. et al. Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature 409, 1060–1063 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. To, J. P. et al. Cytokinin regulates type-A Arabidopsis response regulator activity and protein stability via two-component phosphorelay. Plant Cell 19, 3901–3914 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tan, X. et al. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446, 640–645 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Shimada, A. et al. Structural basis for gibberellin recognition by its receptor GID1. Nature 456, 520–523 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Nishimura, N. et al. Structural mechanism of abscisic acid binding and signaling by dimeric PYR1. Science 326, 1373–1379 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Santiago, J. et al. The abscisic acid receptor PYR1 in complex with abscisic acid. Nature 462, 665–668 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Miyazono, K. et al. Structural basis of abscisic acid signalling. Nature 462, 609–614 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Sheard, L. B. et al. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468, 400–405 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hothorn, M. et al. Structural basis of steroid hormone perception by the receptor kinase BRI1. Nature 474, 467–471 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. She, J. et al. Structural insight into brassinosteroid perception by BRI1. Nature 474, 472–476 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sun, Y. et al. Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex. Science 342, 624–628 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Brunoud, G. et al. A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature 482, 103–106 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Liao, C. Y. et al. Reporters for sensitive and quantitative measurement of auxin response. Nature Methods 12, 207–210 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Larrieu, A. et al. A fluorescent hormone biosensor reveals the dynamics of jasmonate signalling in plants. Nature Commun. 6, 6043 (2015).

    Article  CAS  Google Scholar 

  37. Jones, A. M. et al. Abscisic acid dynamics in roots detected with genetically encoded FRET sensors. Elife 3, e01741 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Waadt, R. et al. FRET-based reporters for the direct visualization of abscisic acid concentration changes and distribution in Arabidopsis. Elife 3, e01739 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Park, S. Y. et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324, 1068–1071 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Peterson, F. C. et al. Structural basis for selective activation of ABA receptors. Nature Struct. Mol. Biol. 17, 1109–1113 (2010).

    Article  CAS  Google Scholar 

  41. Park, S. Y. et al. Agrochemical control of plant water use using engineered abscisic acid receptors. Nature 23, 545–548 (2015).

    Article  CAS  Google Scholar 

  42. Thornton, J. W. Resurrecting ancient genes: experimental analysis of extinct molecules. Nature Rev. Genet. 5, 366–375 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Harms, M. J. & Thornton, J. W. Analyzing protein structure and function using ancestral gene reconstruction. Curr. Opin. Struct. Biol. 20, 360–366 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nelson, D. C. et al. F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 108, 8897–8902 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Waters, M. T. et al. Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis. Development 139, 1285–1295 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Delaux, P. M. et al. Origin of strigolactones in the green lineage. New Phytol. 195, 857–871 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Toth, R. & van der Hoorn, R. A. Emerging principles in plant chemical genetics. Trends Plant Sci. 15, 81–88 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Blackwell, H. E. & Zhao, Y. Chemical genetic approaches to plant biology. Plant Physiol. 133, 448–455 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hayashi, K. et al. Small-molecule agonists and antagonists of F-box protein–substrate interactions in auxin perception and signaling. Proc. Natl Acad. Sci. USA 105, 5632–5637 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Takeuchi, J. et al. Designed abscisic acid analogs as antagonists of PYL-PP2C receptor interactions. Nature Chem. Biol. 10, 477–482 (2014).

    Article  CAS  Google Scholar 

  51. Shani, E. et al. Gibberellins accumulate in the elongating endodermal cells of Arabidopsis root. Proc. Natl Acad. Sci. USA 110, 4834–4839 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Irani, N. G. et al. Fluorescent castasterone reveals BRI1 signaling from the plasma membrane. Nature Chem. Biol. 8, 583–589 (2012).

    Article  CAS  Google Scholar 

  53. Tsuda, E. et al. Alkoxy-auxins are selective inhibitors of auxin transport mediated by PIN, ABCB, and AUX1 transporters. J. Biol. Chem. 286, 2354–2364 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Hayashi, K. et al. Auxin transport sites are visualized in planta using fluorescent auxin analogs. Proc. Natl Acad. Sci. USA 111, 11557–11562 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rasmussen, A. et al. A fluorescent alternative to the synthetic strigolactone GR24. Mol. Plant 6, 100–112 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Tsuchiya, Y. et al. strigolactone receptors in Striga hermonthica with fluorescence. Science 349, 846–848 (2015).

    Article  CAS  Google Scholar 

  57. Schaumberg, K. A. et al. Quantitative characterization of genetic parts and circuits for plant synthetic biology. Nature Methods 13, 94–100 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Ishizaki, K., Nishihama, R., Yamato, K. T. & Kohchi, T. Molecular genetic tools and techniques for Marchantia polymorpha research. Plant Cell Physiol. http://dx.doi.org/10.1093/pcp/pcv097 (2015).

  59. Vernoux, T. et al. The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Mol. Syst. Biol. 7, 508 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Prigge, M. J. & Bezanilla, M. Evolutionary crossroads in developmental biology: Physcomitrella patens. Development 137, 3535–3543 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Sun, B., Xu, Y., Ng, K. H. & Ito, T. A timing mechanism for stem cell maintenance and differentiation in the Arabidopsis floral meristem. Genes Dev. 23, 1791–1804 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sun, B. et al. Timing mechanism dependent on cell division is invoked by Polycomb eviction in plant stem cells. Science 343, 1248559 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Wu, M.-F. et al. Auxin-regulated chromatin switch directs acquisition of flower primordium founder fate. eLife 4, e09269 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hashimoto, T. Microtubules in plants. Arabidopsis Book 13, e0179 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Meagher, R. B. & Fechheimer, M. The Arabidopsis cytoskeletal genome. Arabidopsis Book 2, e0096 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Smith, L. G. & Oppenheimer, D. G. Spatial control of cell expansion by the plant cytoskeleton. Annu. Rev. Cell Dev. Biol. 21, 271–295 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Gutierrez, R., Lindeboom, J. J., Paredez, A. R., Emons, A. M. & Ehrhardt, D. W. Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nature Cell Biol. 11, 797–806 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Li, S., Bashline, L., Lei, L. & Gu, Y. Cellulose synthesis and its regulation. Arabidopsis Book 12, e0169 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Morimatsu, M. et al. The molecular structure of the fastest myosin from green algae, Chara. Biochem. Biophys. Res. Commun. 270, 147–152 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Tominaga, M. et al. Cytoplasmic streaming velocity as a plant size determinant. Dev. Cell 27, 345–352 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Shcherbakova, D. M., Shemetov, A. A., Kaberniuk, A. A. & Verkhusha, V. V. Natural photoreceptors as a source of fluorescent proteins, biosensors, and optogenetic tools. Annu. Rev. Biochem. 84, 519–550 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sorokina, O. et al. A switchable light-input, light-output system modelled and constructed in yeast. J. Biol. Eng. 3, 15 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Kennedy, M. J. et al. Rapid blue-light-mediated induction of protein interactions in living cells. Nature Methods 7, 973–975 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shimizu-Sato, S., Huq, E., Tepperman, J. M. & Quail, P. H. A light-switchable gene promoter system. Nature Biotechnol. 20, 1041–1044 (2002).

    Article  CAS  Google Scholar 

  75. Tyszkiewicz, A. B. & Muir, T. W. Activation of protein splicing with light in yeast. Nature Methods 5, 303–305 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Wong, S., Mosabbir, A. A. & Truong, K. An engineered split intein for photoactivated protein trans-splicing. PLoS ONE 10, e0135965 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Beyer, H. M. et al. Red light-regulated reversible nuclear localization of proteins in mammalian cells and zebrafish. ACS Synth. Biol. 4, 951–958 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Nishimura, K., Fukagawa, T., Takisawa, H., Kakimoto, T. & Kanemaki, M. An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nature Methods 6, 917–922 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Havens, K. A. et al. A synthetic approach reveals extensive tunability of auxin signaling. Plant Physiol. 160, 135–142 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang, L., Ward, J. D., Cheng, Z. & Dernburg, A. F. The auxin-inducible degradation (AID) system enables versatile conditional protein depletion in C. elegans. Development 142, 4374–4384 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Liang, F. S., Ho, W. Q. & Crabtree, G. R. Engineering the ABA plant stress pathway for regulation of induced proximity. Sci. Signal. 4, rs2 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Khakhar, A., Bolten, N. J., Nemhauser, J. & Klavins, E. Cell–cell communication in yeast using auxin biosynthesis and auxin responsive CRISPR transcription factors. ACS Synth. Biol. http://dx.doi.org/10.1021/acssynbio.5b00064 (2015).

  83. Pierre-Jerome, E., Jang, S. S., Havens, K. A., Nemhauser, J. L. & Klavins, E. Recapitulation of the forward nuclear auxin response pathway in yeast. Proc. Natl Acad. Sci. USA 111, 9407–9412 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Guseman, J. M. et al. Auxin-induced degradation dynamics set the pace for lateral root development. Development 142, 905–909 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ort, D. R. et al. Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc. Natl Acad. Sci. USA 112, 8529–8536 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jiang, W. et al. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res. 41, e188 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Baltes, N. J., Gil-Humanes, J., Cermak, T., Atkins, P. A. & Voytas, D. F. DNA replicons for plant genome engineering. Plant Cell 26, 151–163 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wu, H. Y. et al. AGROBEST: an efficient Agrobacterium-mediated transient expression method for versatile gene function analyses in Arabidopsis seedlings. Plant Methods 10, 19 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Fahlgren, N., Gehan, M. A. & Baxter, I. Lights, camera, action: high-throughput plant phenotyping is ready for a close-up. Curr. Opin. Plant Biol. 24C, 93–99 (2015).

    Article  Google Scholar 

  90. Yordanov, B. et al. A computational method for automated characterization of genetic components. ACS Synth. Biol. 3, 578–588 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Jang, S. S., Oishi, K. T., Egbert, R. G. & Klavins, E. Specification and simulation of synthetic multicelled behaviors. ACS Synth. Biol. 1, 365–374 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Fernandez-Castane, A., Feher, T., Carbonell, P., Pauthenier, C. & Faulon, J. L. Computer-aided design for metabolic engineering. J. Biotechnol. 192, 302–313 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Oberortner, E. & Densmore, D. Web-based software tool for constraint-based design specification of synthetic biological systems. ACS Synth. Biol. 4, 757–760 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Stevens, J. T. & Myers, C. J. Dynamic modeling of cellular populations within iBioSim. ACS Synth. Biol. 2, 223–229 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Wagner (Univ. Pennsylvania, USA) for sharing unpublished materials; S. Hagihara, M. Yoshimura and K. Itami (Institute of Transformative Biomolecules (ITbM), Nagoya Univ., Japan) for providing diagrams and unpublished Striga seedling images for Fig. 3; H. Hirukawa and S. Hagihara (ITbM) for the illustrations for Figs 1 and 3; and M. Maes (Univ. Washington, USA) for proofreading. Funding for synthetic biology research in J.L.N.'s laboratory is provided by the National Institute of Health (R01 GM107084) and the National Science Foundation (MCB-1411949). K.U.T. is an investigator of Howard Hughes Medical Institute and Gordon and Betty Moore Foundation (HHMI-GBMF), and her group is supported by a grant (GBMF3035).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jennifer L. Nemhauser or Keiko U. Torii.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemhauser, J., Torii, K. Plant synthetic biology for molecular engineering of signalling and development. Nature Plants 2, 16010 (2016). https://doi.org/10.1038/nplants.2016.10

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2016.10

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing