Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Systematic analysis of how phytochrome B dimerization determines its specificity

A Corrigendum to this article was published on 17 October 2016

This article has been updated

Abstract

Phytochromes are red/far-red-light detecting photoreceptors that regulate plant growth and development. They photo-interconvert between an inactive Pr (red-light absorbing) and a physiologically active Pfr (far-red-light absorbing) form, acting as light-controlled molecular switches. Although the two major plant phytochromes A (phyA) and B (phyB) share similar absorption properties, they exhibit dramatic differences in their action spectra. Since both phytochromes antagonistically regulate seedling development under vegetative shade, it is essential for plants to clearly distinguish between phyA and phyB action. This discrimination is not comprehensible solely by the molecular properties of the phytochromes, but is evidently due to the dynamics of the phytochrome system. Using an integrated experimental and mathematical modelling approach we show that phytochrome dimerization is an essential element for phyB function. Our findings reveal that light-independent Pfr to Pr relaxation (dark reversion) and association/dissociation to nuclear bodies (NBs) severely depend on the conformational state of the phyB dimer. We conclude that only Pfr–Pfr homodimers of phyB can be responsible for triggering physiological responses, leading to a suppression of phyB function in the far-red range of the light spectrum.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Discrepancy between model predictions and experimental results.
Figure 2: Reaction scheme describing phyB dimer dynamics.
Figure 3: In vivo phyB dark reversion kinetics.
Figure 4: Calibration of the kinetic phyB model.
Figure 5: Model prediction of fluence rate responses identifies the nuclear Pfr–Pfr homodimer pool as physiologically relevant.

Similar content being viewed by others

Change history

References

  1. Fankhauser, C. & Staiger, D. Photoreceptors in Arabidopsis thaliana: light perception, signal transduction and entrainment of the endogenous clock. Planta 216, 1–16 (2002).

    Article  CAS  Google Scholar 

  2. Chen, M., Chory, J. & Fankhauser, C. Light signal transduction in higher plants. Annu. Rev. Genet. 38, 87–117 (2004).

    Article  CAS  Google Scholar 

  3. Möglich, A., Yang, X., Ayers, R. A. & Moffat, K. Structure and function of plant photoreceptors. Annu Rev Plant Biol 61, 21–47 (2010).

    Article  Google Scholar 

  4. Franklin, K. A. & Quail, P. H. Phytochrome functions in Arabidopsis development. J. Exp. Bot. 61, 11–24 (2010).

    Article  CAS  Google Scholar 

  5. Casal, J. J. Photoreceptor signaling networks in plant responses to shade. Annu. Rev. Plant Biol. 64, 403–427 (2013).

    Article  CAS  Google Scholar 

  6. Yanovsky, M. J., Casal, J. J. & Whitelam, G. C. Phytochrome A, phytochrome B and HY4 are involved in hypocotyl growth responses to natural radiation in Arabidopsis: weak de-etiolation of the phyA mutant under dense canopies. Plant Cell Environ. 18, 788–794 (1995).

    Article  CAS  Google Scholar 

  7. Rockwell, N. C., Su, Y.-S. & Lagarias, J. C. Phytochrome structure and signaling mechanisms. Annu. Rev. Plant Biol. 57, 837–858 (2006).

    Article  CAS  Google Scholar 

  8. Chen, M., Schwab, R. & Chory, J. Characterization of the requirements for localization of phytochrome B to nuclear bodies. Proc. Natl Acad. Sci. USA 100, 14493–14498 (2003).

    Article  CAS  Google Scholar 

  9. Fankhauser, C. & Chen, M. Transposing phytochrome into the nucleus. Trends Plant Sci. 13, 596–601 (2008).

    Article  CAS  Google Scholar 

  10. Klose, C., Viczián, A., Kircher, S., Schäfer, E. & Nagy, F. Molecular mechanisms for mediating light-dependent nucleo/cytoplasmic partitioning of phytochrome photoreceptors. New Phytol. 206, 965–971 (2014).

    Article  Google Scholar 

  11. Huq, E., Al-Sady, B. & Quail, P. H. Nuclear translocation of the photoreceptor phytochrome B is necessary for its biological function in seedling photomorphogenesis. Plant J. 35, 660–664 (2003).

    Article  CAS  Google Scholar 

  12. Matsushita, T., Mochizuki, N. & Nagatani, A. Dimers of the N-terminal domain of phytochrome B are functional in the nucleus. Nature 424, 571–574 (2003).

    Article  CAS  Google Scholar 

  13. Eichenberg, K. et al. Arabidopsis phytochromes C and E have different spectral characteristics from those of phytochromes A and B. FEBS Lett. 470, 107–112 (2000).

    Article  CAS  Google Scholar 

  14. Smith, H., Xu, Y. & Quail, P. H. Antagonistic but complementary actions of phytochromes A and B allow seedling de-etiolation. Plant Physiol. 114, 637–641 (1997).

    Article  CAS  Google Scholar 

  15. Rausenberger, J. et al. Photoconversion and nuclear trafficking cycles determine phytochrome A's response profile to far-red light. Cell 146, 813–825 (2011).

    Article  CAS  Google Scholar 

  16. Rausenberger, J. et al. An integrative model for phytochrome B mediated photomorphogenesis from protein dynamics to physiology. PLoS ONE 5, e10721 (2010).

    Article  Google Scholar 

  17. Yamaguchi, R., Nakamura, M., Mochizuki, N., Kay, S. A. & Nagatani, A. Light-dependent translocation of a phytochrome B-GFP fusion protein to the nucleus in transgenic Arabidopsis. J. Cell Biol. 145, 437–445 (1999).

    Article  CAS  Google Scholar 

  18. Kircher, S. et al. Light quality-dependent nuclear import of the plant photoreceptors phytochrome A and B. Plant Cell 11, 1445–1456 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kirchenbauer, D. Analysen zur intra-und interzellulären Phytochrom-Signalleitung. Dissertation (Albert-Ludwigs-Universität Freiburg, 2009).

    Google Scholar 

  20. Van Buskirk, E. K., Reddy, A. K., Nagatani, A. & Chen, M. Photobody localization of phytochrome B is tightly correlated with prolonged and light-dependent inhibition of hypocotyl elongation in the Dark. Plant Physiol. 165, 595–607 (2014).

    Article  CAS  Google Scholar 

  21. Brockmann, J., Rieble, S., Kazarinova-Fukshansky, N., Seyfried, M. & Schäfer, E. Phytochrome behaves as a dimer in vivo. Plant Cell Environ. 10, 105–111 (1987).

    CAS  Google Scholar 

  22. Hennig, L. & Schäfer, E. Both subunits of the dimeric plant photoreceptor phytochrome require chromophore for stability of the far-red light-absorbing form. J. Biol. Chem. 276, 7913–7918 (2001).

    Article  CAS  Google Scholar 

  23. Wagner, D., Tepperman, J. M. & Quail, P. H. Overexpression of phytochrome b induces a short hypocotyl phenotype in transgenic Arabidopsis. Plant Cell 3, 1275–1288 (1991).

    Article  CAS  Google Scholar 

  24. Mira-Rodado, V. et al. Functional cross-talk between two-component and phytochrome B signal transduction in Arabidopsis. J. Exp. Bot. 58, 2595–2607 (2007).

    Article  CAS  Google Scholar 

  25. Elich, T. D. & Chory, J. Biochemical characterization of Arabidopsis wild-type and mutant phytochrome B holoproteins. Plant Cell 9, 2271–2280 (1997).

    Article  CAS  Google Scholar 

  26. Sweere, U. et al. Interaction of the response regulator ARR4 with phytochrome B in modulating red light signaling. Science 294, 1108–1111 (2001).

    Article  CAS  Google Scholar 

  27. Jabben, M., Beggs, C. & Schäfer, E. Dependence of Pfr/Ptot-ratios on light quality and light quantity. Photochem. Photobiol. 35, 709–712 (1982).

    Article  CAS  Google Scholar 

  28. Kretsch, T., Poppe, C. & Schäfer, E. A new type of mutation in the plant photoreceptor phytochrome B causes loss of photoreversibility and an extremely enhanced light sensitivity. Plant J. 22, 177–186 (2000).

    Article  CAS  Google Scholar 

  29. Ádám, É. et al. Altered dark- and photoconversion of phytochrome B mediate extreme light sensitivity and loss of photoreversibility of the phyB-401 mutant. PLoS ONE 6, e27250 (2011).

    Article  Google Scholar 

  30. Ni, W. et al. A mutually assured destruction mechanism attenuates light signaling in Arabidopsis. Science 344, 1160–1164 (2014).

    Article  CAS  Google Scholar 

  31. Trupkin, S. A., Legris, M., Buchovsky, A. S., Tolava Rivero, M. B. & Casal, J. J. Phytochrome B nuclear bodies respond to the low red to far-red ratio and to the reduced irradiance of canopy shade in Arabidopsis. Plant Physiol. 165, 1698–1708 (2014).

    Article  CAS  Google Scholar 

  32. Takala, H. et al. Signal amplification and transduction in phytochrome photosensors. Nature 509, 245–248 (2014).

    Article  CAS  Google Scholar 

  33. Burgie, E. S., Bussell, A. N., Walker, J. M., Dubiel, K. & Vierstra, R. D. Crystal structure of the photosensing module from a red/far-red light-absorbing plant phytochrome. Proc. Natl Acad. Sci. USA 111, 10179–10184 (2014).

    Article  CAS  Google Scholar 

  34. Medzihradszky, M. et al. Phosphorylation of phytochrome B inhibits light-induced signaling via accelerated dark reversion in Arabidopsis. Plant Cell 25, 535–544 (2013).

    Article  CAS  Google Scholar 

  35. Botto, J. F. Sánchez, R. A. & Casal, J. J. Role of phytochrome B in the induction of seed germination by light in Arabidopsis thaliana. J. Plant Physiol. 146, 307–312 (1995).

    Article  CAS  Google Scholar 

  36. Furuya, M. & Schäfer, E. Photoperception and signalling of induction reactions by different phytochromes. Trends Plant Sci. 1, 301–307 (1996).

    Article  Google Scholar 

  37. VanDerWoude, W. J. A dimeric mechanism for the action of phytochrome: evidence from photothermal interactions in lettuce seed germination. Photochem. Photobiol. 42, 655–661 (1985).

    Article  CAS  Google Scholar 

  38. Bauer, D. et al. Constitutive photomorphogenesis 1 and multiple photoreceptors control degradation of phytochrome interacting factor 3, a transcription factor required for light signaling in Arabidopsis. Plant Cell 16, 1433–1445 (2004).

    Article  CAS  Google Scholar 

  39. Hirschfeld, M., Tepperman, J. M., Clack, T., Quail, P. H. & Sharrock, R. A. Coordination of phytochrome levels in phyB mutants of Arabidopsis as revealed by apoprotein-specific monoclonal antibodies. Genetics 149, 523–535 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Dieterle, M., Zhou, Y. C., Schäfer, E., Funk, M. & Kretsch, T. EID1, an F-box protein involved in phytochrome A-specific light signaling. Genes Dev. 15, 939–944 (2001).

    Article  CAS  Google Scholar 

  41. Kreutz, C., Raue, A., Kaschek, D. & Timmer, J. Profile likelihood in systems biology. FEBS J. 280, 2564–2571 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Andreas Hiltbrunner, Jens Timmer and Robert Smith for helpful comments on the manuscript and Michael Volpers and Milad Adibi for helpful discussions and support. F.V. acknowledges funding from the LGFG/International Graduate Academy, University of Freiburg. C.K. was supported by DFG grant (SCHA 303/16-1) to E.S., S.K. acknowledges support by a DFG grant (KI 1077/2). C.F. was supported by the Human Frontier Science Program (HFSP Research Grant RGP0025/2013).

Author information

Authors and Affiliations

Authors

Contributions

C.F. and E.S. devised this project. C.K. designed and performed the experiments, except the nuclear body experiments and the hypocotyl measurements (Fig. 1). F.V. analysed the experimental data, performed all mathematical calculations, designed the nuclear body study and performed and analysed the nuclear body experiments. S.K. supervised the nuclear body study and performed some of these experiments (Supplementary Fig. 11). A.H. performed hypocotyl measurement (Fig. 1). E.S. supervised all other experiments; C.F. supervised the mathematical modelling. F.V., C.K., S.K., E.S. and C.F. wrote the manuscript.

Corresponding authors

Correspondence to Eberhard Schäfer or Christian Fleck.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klose, C., Venezia, F., Hussong, A. et al. Systematic analysis of how phytochrome B dimerization determines its specificity. Nature Plants 1, 15090 (2015). https://doi.org/10.1038/nplants.2015.90

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2015.90

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing