Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Clustering of a kinesin-14 motor enables processive retrograde microtubule-based transport in plants

Abstract

The molecular motors kinesin and dynein drive bidirectional motility along microtubules (MTs) in most eukaryotic cells. Land plants, however, are a notable exception, because they contain a large number of kinesins but lack cytoplasmic dynein, the foremost processive retrograde transporter. It remains unclear how plants achieve retrograde cargo transport without dynein. Here, we have analysed the motility of the six members of minus-end-directed kinesin-14 motors in the moss Physcomitrella patens and found that none are processive as native dimers. However, when artificially clustered into as little as dimer of dimers, the type-VI kinesin-14 (a homologue of Arabidopsis KCBP (kinesin-like calmodulin binding protein)) exhibited highly processive and fast motility (up to 0.6 μm s−1). Multiple kin14-VI dimers attached to liposomes also induced transport of this membrane cargo over several microns. Consistent with these results, in vivo observations of green fluorescent protein-tagged kin14-VI in moss cells revealed fluorescent punctae that moved processively towards the minus-ends of the cytoplasmic MTs. These data suggest that clustering of a kinesin-14 motor serves as a dynein-independent mechanism for retrograde transport in plants.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Four kinesin-14 subgroup members exhibit minus-end-directed motor activity.
Figure 2: Artificially tetramerized kin14-VIb showed processive motility.
Figure 3: Kin14-VIb transports liposomes along MTs.
Figure 4: Minus-end-directed motility of kin14-VIb clusters in vivo.

Similar content being viewed by others

References

  1. Shimmen, T. & Yokota, E. Cytoplasmic streaming in plants. Curr. Opin. Cell Biol. 16, 68–72 (2004).

    Article  CAS  Google Scholar 

  2. Cai, G. & Cresti, M. Are kinesins required for organelle trafficking in plant cells? Front Plant. Sci. 3, 170 (2012).

    Article  Google Scholar 

  3. Nakaoka, Y., Kimura, A., Tani, T. & Goshima, G. Cytoplasmic nucleation and atypical branching nucleation generate endoplasmic microtubules in Physcomitrella patens. Plant Cell 27, 228–242 (2015).

    Article  CAS  Google Scholar 

  4. Miki, T., Nishina, M. & Goshima, G. RNAi screening identifies the armadillo repeat-containing kinesins responsible for microtubule-dependent nuclear positioning in Physcomitrella patens. Plant Cell Physiol. 56, 737–749 (2015).

    Article  CAS  Google Scholar 

  5. Hirokawa, N., Noda, Y., Tanaka, Y. & Niwa, S. Kinesin superfamily motor proteins and intracellular transport. Nature Rev. Mol. Cell Biol. 10, 682–696 (2009).

    Article  CAS  Google Scholar 

  6. Hancock, W. O. Bidirectional cargo transport: moving beyond tug of war. Nature Rev. Mol. Cell Biol. 15, 615–628 (2014).

    Article  CAS  Google Scholar 

  7. Lawrence, C. J., Morris, N. R., Meagher, R. B. & Dawe, R. K. Dyneins have run their course in plant lineage. Traffic 2, 362–363 (2001).

    Article  CAS  Google Scholar 

  8. Vale, R. D. The molecular motor toolbox for intracellular transport. Cell 112, 467–480 (2003).

    Article  CAS  Google Scholar 

  9. Endow, S. A. Determinants of molecular motor directionality. Nature Cell Biol. 1, E163–E167 (1999).

    Article  CAS  Google Scholar 

  10. Mieck, C. et al. Non-catalytic motor domains enable processive movement and functional diversification of the kinesin-14 Kar3. eLife 4, e04489 (2015).

    Article  Google Scholar 

  11. Hepperla, A. J. et al. Minus-end-directed kinesin-14 motors align antiparallel microtubules to control metaphase spindle length. Dev. Cell 31, 61–72 (2014).

    Article  CAS  Google Scholar 

  12. Case, R. B., Pierce, D. W., Hom-Booher, N., Hart, C. L. & Vale, R. D. The directional preference of kinesin motors is specified by an element outside of the motor catalytic domain. Cell 90, 959–966 (1997).

    Article  CAS  Google Scholar 

  13. Hatsumi, M. & Endow, S. A. Mutants of the microtubule motor protein, nonclaret disjunctional, affect spindle structure and chromosome movement in meiosis and mitosis. J. Cell Sci. 101, 547–559 (1992).

    PubMed  Google Scholar 

  14. Goshima, G. & Vale, R. D. Cell cycle-dependent dynamics and regulation of mitotic kinesins in Drosophila S2 cells. Mol. Biol. Cell 16, 3896–3907 (2005).

    Article  CAS  Google Scholar 

  15. Shen, Z., Collatos, A. R., Bibeau, J. P., Furt, F. & Vidali, L. Phylogenetic analysis of the kinesin superfamily from Physcomitrella. Front. Plant Sci. 3, 230 (2012).

    Article  Google Scholar 

  16. Reddy, A. S. & Day, I. S. Kinesins in the Arabidopsis genome: a comparative analysis among eukaryotes. BMC Genomics 2, 2 (2001).

    Article  CAS  Google Scholar 

  17. Oppenheimer, D. G. et al. Essential role of a kinesin-like protein in Arabidopsis trichome morphogenesis. Proc. Natl Acad. Sci. USA 94, 6261–6266 (1997).

    Article  CAS  Google Scholar 

  18. Suetsugu, N. et al. The KAC family of kinesin-like proteins is essential for the association of chloroplasts with the plasma membrane in land plants. Plant Cell Physiol. 53, 1854–1865 (2012).

    Article  CAS  Google Scholar 

  19. Suetsugu, N. et al. Two kinesin-like proteins mediate actin-based chloroplast movement in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 107, 8860–8865 (2010).

    Article  CAS  Google Scholar 

  20. Song, H., Golovkin, M., Reddy, A. S. & Endow, S. A. In vitro motility of AtKCBP, a calmodulin-binding kinesin protein of Arabidopsis. Proc. Natl Acad. Sci. USA 94, 322–327 (1997).

    Article  CAS  Google Scholar 

  21. Pechatnikova, E. & Taylor, E. W. Kinetic mechanism of monomeric non-claret disjunctional protein (Ncd) ATPase. J. Biol. Chem. 272, 30735–30740 (1997).

    Article  CAS  Google Scholar 

  22. Endres, N. F., Yoshioka, C., Milligan, R. A. & Vale, R. D. A lever-arm rotation drives motility of the minus-end-directed kinesin Ncd. Nature 439, 875–878 (2006).

    Article  CAS  Google Scholar 

  23. Verhey, K. J. & Hammond, J. W. Traffic control: regulation of kinesin motors. Nature Rev. Mol. Cell Biol. 10, 765–777 (2009).

    Article  CAS  Google Scholar 

  24. Harbury, P. B., Zhang, T., Kim, P. S. & Alber, T. A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science 262, 1401–1407 (1993).

    Article  CAS  Google Scholar 

  25. Ulbrich, M. H. & Isacoff, E. Y. Subunit counting in membrane-bound proteins. Nature Methods 4, 319–321 (2007).

    Article  CAS  Google Scholar 

  26. Hines, K. E. Inferring subunit stoichiometry from single molecule photobleaching. J. Gen. Physiol. 141, 737–746 (2013).

    Article  CAS  Google Scholar 

  27. Vale, R. D. et al. Direct observation of single kinesin molecules moving along microtubules. Nature 380, 451–453 (1996).

    Article  CAS  Google Scholar 

  28. McKenney, R. J., Huynh, W., Tanenbaum, M. E., Bhabha, G. & Vale, R. D. Activation of cytoplasmic dynein motility by dynactin-cargo adapter complexes. Science 345, 337–341 (2014).

    Article  CAS  Google Scholar 

  29. Cove, D. The moss Physcomitrella patens. Annu. Rev. Genet. 39, 339–358 (2005).

    Article  CAS  Google Scholar 

  30. Choi, Y. K., Liu, P., Sze, S. K., Dai, C. & Qi, R. Z. CDK5RAP2 stimulates microtubule nucleation by the gamma-tubulin ring complex. J. Cell Biol. 191, 1089–1095 (2010).

    Article  CAS  Google Scholar 

  31. Kollman, J. M., Polka, J. K., Zelter, A., Davis, T. N. & Agard, D. A. Microtubule nucleating gamma-TuSC assembles structures with 13-fold microtubule-like symmetry. Nature 466, 879–882 (2010).

    Article  CAS  Google Scholar 

  32. Vos, J. W., Safadi, F., Reddy, A. S. & Hepler, P. K. The kinesin-like calmodulin binding protein is differentially involved in cell division. Plant Cell 12, 979–990 (2000).

    Article  CAS  Google Scholar 

  33. Lazzaro, M. D., Marom, E. Y. & Reddy, A. S. Polarized cell growth, organelle motility, and cytoskeletal organization in conifer pollen tube tips are regulated by KCBP, the calmodulin-binding kinesin. Planta 238, 587–597 (2013).

    Article  CAS  Google Scholar 

  34. Furuta, K. et al. Measuring collective transport by defined numbers of processive and nonprocessive kinesin motors. Proc. Natl Acad. Sci. USA 110, 501–506 (2013).

    Article  CAS  Google Scholar 

  35. Tomishige, M., Klopfenstein, D. R. & Vale, R. D. Conversion of Unc104/KIF1A kinesin into a processive motor after dimerization. Science 297, 2263–2267 (2002).

    Article  CAS  Google Scholar 

  36. Klopfenstein, D. R., Tomishige, M., Stuurman, N. & Vale, R. D. Role of phosphatidylinositol(4,5)bisphosphate organization in membrane transport by the Unc104 kinesin motor. Cell 109, 347–358 (2002).

    Article  CAS  Google Scholar 

  37. Sivaramakrishnan, S. & Spudich, J. A. Coupled myosin VI motors facilitate unidirectional movement on an F-actin network. J. Cell Biol. 187, 53–60 (2009).

    Article  CAS  Google Scholar 

  38. Aitken, C. E., Marshall, R. A. & Puglisi, J. D. An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophys. J. 94, 1826–1835 (2008).

    Article  CAS  Google Scholar 

  39. Edelstein, A., Amodaj, N., Hoover, K., Vale, R. & Stuurman, N. Computer control of microscopes using μManager. Curr. Protoc. Mol. Biol. 92, 14.20.1–14.20.17 (2010).

    Google Scholar 

  40. Bieling, P. et al. Reconstitution of a microtubule plus-end tracking system in vitro. Nature 450, 1100–1105 (2007).

    Article  CAS  Google Scholar 

  41. Nakaoka, Y. et al. An inducible RNA interference system in Physcomitrella patens reveals a dominant role of augmin in phragmoplast microtubule generation. Plant Cell 24, 1478–1493 (2012).

    Article  CAS  Google Scholar 

  42. Miki, T., Naito, H., Nishina, M. & Goshima, G. Endogenous localizome identifies 43 mitotic kinesins in a plant cell. Proc. Natl Acad. Sci. USA 111, E1053–E1061 (2014).

    Article  CAS  Google Scholar 

  43. Yamada, M., Miki, T. & Goshima, G. Imaging mitosis in the moss Physcomitrella patens. Methods Mol. Biol. (in the press).

Download references

Acknowledgements

We are grateful to S. Ross and L. Chang (Nikon USA) for providing microscopes at MBL. W. Huynh provided invaluable advice in establishing the liposome assay, and A. Jain assisted with the photobleaching experiment. We also thank M. Bezanilla (University of Massachusetts Amherst) and Tomoko Nishiyama (Nagoya University) for help with microscopy and helpful discussion, Y. Nakaoka for moss lines, and M. Nishina and R. Inaba for technical assistance. This work was supported by the Human Frontier Science Program, the James A. and Faith Miller Memorial Fund (MBL), the Laura and Arthur Colwin Endowed Summer Research Fellowship Fund (MBL), the TORAY Science Foundation, Grants-in-Aid for Scientific Research (15K14540, MEXT) (G.G.), and the NIH (38499) (R.D.V.).

Author information

Authors and Affiliations

Authors

Contributions

E.J., M.Y., R.D.V. and G.G. designed the research; E.J., M.Y. and G.G. performed experiments; E.J., M.Y., R.D.V. and G.G. analysed data; E.J., R.D.V. and G.G. wrote the paper.

Corresponding author

Correspondence to Gohta Goshima.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jonsson, E., Yamada, M., Vale, R. et al. Clustering of a kinesin-14 motor enables processive retrograde microtubule-based transport in plants. Nature Plants 1, 15087 (2015). https://doi.org/10.1038/nplants.2015.87

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2015.87

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing