Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Role of auxiliary proteins in Rubisco biogenesis and function



Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyses the conversion of atmospheric CO2 into organic compounds during photosynthesis. Despite its pivotal role in plant metabolism, Rubisco is an inefficient enzyme and has therefore been a key target in bioengineering efforts to improve crop yields. Much has been learnt about the complex cellular machinery involved in Rubisco assembly and metabolic repair over recent years. The simple form of Rubisco found in certain bacteria and dinoflagellates comprises two large subunits, and generally requires the chaperonin system for folding. However, the evolution of hexadecameric Rubisco, which comprises eight large and eight small subunits, from its dimeric precursor has rendered Rubisco in most plants, algae, cyanobacteria and proteobacteria dependent on an array of additional factors. These auxiliary factors include several chaperones for assembly as well as ATPases of the AAA+ family for functional maintenance. An integrated view of the pathways underlying Rubisco biogenesis and repair will pave the way for efforts to improve the enzyme with the goal of increasing crop yields.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Central role of Rubisco in photosynthesis.
Figure 2: Comparison of green-type and red-type Rubisco.
Figure 3: The bacterial chaperonin system.
Figure 4: The RbcX assembly chaperone.
Figure 5: Models of Rubisco assembly.
Figure 6: Rubisco inactivation and reactivation.


  1. 1

    Andersson, I. & Backlund, A. Structure and function of Rubisco. Plant Physiol. Biochem. 46, 275–291 (2008).

    CAS  PubMed  Google Scholar 

  2. 2

    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).

    CAS  PubMed  Google Scholar 

  3. 3

    Miziorko, H. M. & Lorimer, G. H. Ribulose-1,5-bisphosphate carboxylase-oxygenase. Annu. Rev. Biochem. 52, 507–535 (1983).

    CAS  PubMed  Google Scholar 

  4. 4

    Hartman, F. C. & Harpel, M. R. Structure, function, regulation, and assembly of D-Ribulose-1,5-bisphosphate carboxylase/oxygenase. Annu. Rev. Biochem. 63, 197–234 (1994).

    CAS  PubMed  Google Scholar 

  5. 5

    Ellis, R. J. Biochemistry: Tackling unintelligent design. Nature 463, 164–165 (2010).

    CAS  PubMed  Google Scholar 

  6. 6

    Andersson, I. Catalysis and regulation in Rubisco. J. Exp. Bot. 59, 1555–1568 (2008).

    CAS  PubMed  Google Scholar 

  7. 7

    Portis, A. R. & Parry, M. A. J. Discoveries in Rubisco (Ribulose 1,5-bisphosphate carboxylase/oxygenase): a historical perspective. Photosynth. Res. 94, 121–143 (2007).

    CAS  PubMed  Google Scholar 

  8. 8

    Maurino, V. G. & Peterhansel, C. Photorespiration: current status and approaches for metabolic engineering. Curr. Opin. Plant Biol. 13, 249–256 (2010).

    PubMed  Google Scholar 

  9. 9

    Peterhansel, C., Niessen, M. & Kebeish, R. M. Metabolic engineering towards the enhancement of photosynthesis. Photochem. Photobiol. 84, 1317–1323 (2008).

    CAS  PubMed  Google Scholar 

  10. 10

    Whitney, S. M., Houtz, R. L. & Alonso, H. Advancing our understanding and capacity to engineer nature's CO2-sequestering enzyme, Rubisco. Plant Physiol. 155, 27–35 (2011).

    CAS  PubMed  Google Scholar 

  11. 11

    Pearce, F. G. Catalytic by-product formation and ligand binding by Ribulose bisphosphate carboxylases from different phylogenies. Biochem. J. 399, 525–534 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Evans, J. R. & von Caemmerer, S. Enhancing photosynthesis. Plant Physiol. 155, 19 (2011).

  13. 13

    Raines, C. A. Increasing photosynthetic carbon assimilation in C3 plants to improve crop yield: current and future strategies. Plant Physiol. 155, 36–42 (2011).

    CAS  PubMed  Google Scholar 

  14. 14

    Evans, J. R. Improving photosynthesis. Plant Physiol. 162, 1780–1793 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Parry, M. A. J. et al. Rubisco activity and regulation as targets for crop improvement. J. Exp. Bot. 64, 717–730 (2013).

    CAS  PubMed  Google Scholar 

  16. 16

    Tabita, F. R., Satagopan, S., Hanson, T. E., Kreel, N. E. & Scott, S. S. Distinct form I, II, III, and IV Rubisco proteins from the three kingdoms of life provide clues about Rubisco evolution and structure/function relationships. J. Exp. Bot. 59, 1515–1524 (2008).

    CAS  Google Scholar 

  17. 17

    Parry, M. A., Andralojc, P. J., Mitchell, R. A., Madgwick, P. J. & Keys, A. J. Manipulation of Rubisco: the amount, activity, function and regulation. J. Exp. Bot 54, 1321–1333 (2003).

    CAS  PubMed  Google Scholar 

  18. 18

    Spreitzer, R. J. Role of the small subunit in Ribulose-1,5-bisphosphate carboxylase/oxygenase. Arch. Biochem. Biophys. 414, 141–149 (2003).

    CAS  PubMed  Google Scholar 

  19. 19

    Ishikawa, C., Hatanaka, T., Misoo, S., Miyake, C. & Fukayama, H. Functional incorporation of sorghum small subunit increases the catalytic turnover rate of Rubisco in transgenic rice. Plant Physiol. 156, 1603–1611 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Tabita, F. R. Microbial Ribulose 1,5-bisphosphate carboxylase/oxygenase: a different perspective. Photosynth. Res. 60, 1–28 (1999).

    CAS  Google Scholar 

  21. 21

    Schwenkert, S., Soll, J. & Bolter, B. Protein import into chloroplasts—how chaperones feature into the game. Biochim. Biophys. Acta 1808, 901–911 (2011).

    CAS  PubMed  Google Scholar 

  22. 22

    Whitney, S. M., Baldet, P., Hudson, G. S. & Andrews, T. J. Form I Rubiscos from non-green algae are expressed abundantly but not assembled in tobacco chloroplasts. Plant J. 26, 535–547 (2001).

    CAS  PubMed  Google Scholar 

  23. 23

    Duff, A. P., Andrews, T. J. & Curmi, P. M. The transition between the open and closed states of rubisco is triggered by the inter-phosphate distance of the bound bisphosphate. J. Mol. Biol. 298, 903–916 (2000).

    CAS  PubMed  Google Scholar 

  24. 24

    Barraclough, R. & Ellis, R. J. Protein synthesis in chloroplasts. IX. Assembly of newly-synthesized large subunits into Ribulose bisphosphate carboxylase in isolated intact pea chloroplasts. Biochim. Biophys. Acta 608, 18–31 (1980).

    Google Scholar 

  25. 25

    Hartl, F. U. & Hayer-Hartl, M. The first chaperonin. Nature Rev. Mol. Cell Biol. 14, 611 (2013).

    CAS  Google Scholar 

  26. 26

    Kim, Y. E., Hipp, M. S., Bracher, A., Hayer-Hartl, M. & Hartl, F. U. Molecular chaperone functions in protein folding and proteostasis. Annu. Rev. Biochem. 82, 323–355 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Brinker, A. et al. Dual function of protein confinement in chaperonin-assisted protein folding. Cell 107, 223–233 (2001).

    CAS  PubMed  Google Scholar 

  28. 28

    Liu, C. et al. Coupled chaperone action in folding and assembly of hexadecameric Rubisco. Nature 463, 197–202 (2010).

    CAS  PubMed  Google Scholar 

  29. 29

    Vitlin Gruber, A., Nisemblat, S., Azem, A. & Weiss, C. The complexity of chloroplast chaperonins. Trends Plant Sci. 18, 688–694 (2013).

    CAS  PubMed  Google Scholar 

  30. 30

    Weiss, C., Bonshtien, A., Farchi-Pisanty, O., Vitlin, A. & Azem, A. Cpn20: siamese twins of the chaperonin world. Plant Mol. Biol. 69, 227–238 (2009).

    CAS  PubMed  Google Scholar 

  31. 31

    Tsai, Y-C. C., Mueller-Cajar, O., Saschenbrecker, S., Hartl, F. U. & Hayer-Hartl, M. Chaperonin cofactors, Cpn10 and Cpn20, of green algae and plants function as hetero-oligomeric ring complexes. J. Biol. Chem. 287, 20471–20481 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Vitlin Gruber, A., Zizelski, G., Azem, A. & Weiss, C. The Cpn10(1) co-chaperonin of A. thaliana functions only as a hetero-oligomer with Cpn20. PLoS ONE 9, e113835 (2014).

    PubMed  PubMed Central  Google Scholar 

  33. 33

    Saibil, H. R., Fenton, W. A., Clare, D. K. & Horwich, A. L. Structure and allostery of the chaperonin GroEL. J. Mol. Biol. 425, 1476–1487 (2013).

    CAS  PubMed  Google Scholar 

  34. 34

    Bonshtien, A. L. et al. Differential effects of co-chaperonin homologs on Cpn60 oligomers. Cell Stress Chaperones 14, 509–519 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Kerner, M. J. et al. Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell 122, 209–220 (2005).

    CAS  PubMed  Google Scholar 

  36. 36

    Goloubinoff, P., Christeller, J. T., Gatenby, A. A. & Lorimer, G. H. Reconstitution of active dimeric Ribulose bisphosphate carboxylase from an unfolded state depends on two chaperonin proteins and MgATP. Nature 342, 884–889 (1989).

    CAS  PubMed  Google Scholar 

  37. 37

    Georgescauld, F. et al. GroEL/ES chaperonin modulates the mechanism and accelerates the rate of TIM-barrel domain folding. Cell 157, 922–934 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Larimer, F. W. & Soper, T. S. Overproduction of Anabaena 7120 Ribulose-bisphosphate carboxylase/oxygenase in Escherichia coli. Gene 126, 85–92 (1993).

    CAS  PubMed  Google Scholar 

  39. 39

    Emlyn-Jones, D., Woodger, F. J., Price, G. D. & Whitney, S. M. RbcX can function as a Rubisco chaperonin, but is non-essential in Synechococcus PCC7942. Plant Cell Physiol. 47, 1630–1640 (2006).

    CAS  PubMed  Google Scholar 

  40. 40

    Andrews, T. J. Catalysis by cyanobacterial Ribulose-bisphosphate carboxylase large subunits in the complete absence of small subunits. J. Biol. Chem. 263, 12213–12219 (1988).

    CAS  PubMed  Google Scholar 

  41. 41

    Saschenbrecker, S. et al. Structure and function of RbcX, an assembly chaperone for hexadecameric Rubisco. Cell 129, 1189–1200 (2007).

    CAS  PubMed  Google Scholar 

  42. 42

    Kolesinski, P., Belusiak, I., Czarnocki-Cieciura, M. & Szczepaniak, A. Rubisco accumulation factor 1 from Thermosynechococcus elongatus participates in the final stages of Ribulose-1,5-bisphosphate carboxylase/oxygenase assembly in Escherichia coli cells and in vitro. FEBS J. 281, 3920–3932 (2014).

    CAS  PubMed  Google Scholar 

  43. 43

    Tabita, F. R. Rubisco: The enzyme that keeps on giving. Cell 129, 1039–1040 (2007).

    CAS  PubMed  Google Scholar 

  44. 44

    Li, L-A. & Tabita, F. R. Maximum activity of recombinant Ribulose 1,5-bisphosphate carboxylase/oxygenase of Anabaena sp. strain CA requires the product of the rbcx gene. J. Bact. 179, 3793–3796 (1997).

    CAS  PubMed  Google Scholar 

  45. 45

    Onizuka, T. et al. The rbcX gene product promotes the production and assembly of Ribulose-1, 5-bisphosphate carboxylase/oxygenase of Synechococcus sp. PCC7002 in Escherichia coli. Plant Cell Physiol. 45, 1390–1395 (2004).

    CAS  PubMed  Google Scholar 

  46. 46

    Tanaka, S., Sawaya, M. R., Kerfeld, C. A. & Yeates, T. O. Structure of the Rubisco chaperone RbcX from Synechocystis sp. PCC6803. Acta Crystallogr. D Biol. Crystallogr. 63, 1109–1112 (2007).

    CAS  PubMed  Google Scholar 

  47. 47

    Tarnawski, M., Krzywda, S., Bialek, W., Jaskolski, M. & Szczepaniak, A. Structure of the Rubisco chaperone RbcX from the thermophilic cyanobacterium Thermosynechococcus elongatus. Acta Crystallogr. F Struct. Biol. Cryst. Commun. 67, 851–857 (2011).

    CAS  Google Scholar 

  48. 48

    Kolesinski, P. et al. Insights into eukaryotic Rubisco assembly — Crystal structures of RbcX chaperones from Arabidopsis thaliana. Biochim. Biophys. 1830, 2899–2906 (2013).

    CAS  Google Scholar 

  49. 49

    Kolesinski, P., Piechota, J. & Szczepaniak, A. Initial characteristics of RbcX proteins from Arabidopsis thaliana. Plant Mol. Biol. 77, 447–459 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Bracher, A., Starling-Windhof, A., Hartl, F. U. & Hayer-Hartl, M. Crystal structure of a chaperone-bound assembly intermediate of form I Rubisco. Nature Struct. Mol. Biol. 18, 875–880 (2011).

    CAS  Google Scholar 

  51. 51

    van Lun, M., van der Spoel, D. & Andersson, I. Subunit interface dynamics in hexadecameric Rubisco. J. Mol. Biol. 411, 1083–1098 (2011).

    CAS  PubMed  Google Scholar 

  52. 52

    Tarnawski, M., Gubernator, B., Kolesinski, P. & Szczepaniak, A. Heterologous expression and initial characterization of recombinant RbcX protein from Thermosynechococcus elongatus BP-1 and the role of RbcX in Rubisco assembly. Acta Biochim. Pol. 55, 777–785 (2008).

    CAS  PubMed  Google Scholar 

  53. 53

    Pechmann, S., Willmund, F. & Frydman, J. The ribosome as a hub for protein quality control. Mol. Cell 49, 411–421 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Checa, S. K. & Viale, A. M. The 70-Kda Heat-shock protein Dnak chaperone system is required for the productive folding of Ribulose-bisphosphate carboxylase subunits in Escherichia Coli. Eur. J. Biochem. 248, 848–855 (1997).

    CAS  PubMed  Google Scholar 

  55. 55

    Ivey, R. A. III, Subramanian, C. & Bruce, B. D. Identification of a Hsp70 recognition domain within the rubisco small subunit transit peptide. Plant Physiol. 122, 1289–1299 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Friso, G., Majeran, W., Huang, M., Sun, Q. & van Wijk, K. J. Reconstruction of metabolic pathways, protein expression, and homeostasis machineries across maize bundle sheath and mesophyll chloroplasts: large-scale quantitative proteomics using the first maize genome assembly. Plant Physiol. 152, 1219–1250 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Brutnell, T. P., Sawers, R. J., Mant, A. & Langdale, J. A. Bundle sheath defective2, a novel protein required for post-translational regulation of the rbcL gene of maize. Plant Cell 11, 849–864 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Doron, L., Segal, N., Gibori, H. & Shapira, M. The Bsd2 ortholog in Chlamydomonas reinhardtii is a polysome-associated chaperone that co-migrates on sucrose gradients with the rbcL transcript encoding the Rubisco large subunit. Plant J. 80, 345–355 (2014).

    CAS  PubMed  Google Scholar 

  59. 59

    Kampinga, H. H. & Craig, E. A. The Hsp70 chaperone machinery: J proteins as drivers of functional specificity. Nature Rev. Mol. Cell Biol. 11, 579–592 (2010).

    CAS  Google Scholar 

  60. 60

    Feiz, L. et al. Ribulose-1, 5-bis-phosphate carboxylase/oxygenase accumulation factor1 is required for holoenzyme assembly in maize. Plant Cell 24, 3435–3446 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Wheatley, N. M., Sundberg, C. D., Gidaniyan, S. D., Cascio, D. & Yeates, T. O. Structure and identification of a pterin dehydratase-like protein as a Ribulose-bisphosphate carboxylase/oxygenase (Rubisco) assembly factor in the alpha-carboxysome. J. Biol. Chem. 289, 7973–7981 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Feiz, L. et al. A protein with an inactive pterin-4a-carbinolamine dehydratase domain is required for Rubisco biogenesis in plants. Plant J. 80, 862–869 (2014).

    CAS  PubMed  Google Scholar 

  63. 63

    Whitney, S. M., Birch, R., Kelso, C., Beck, J. L. & Kapralov, M. V. Improving recombinant Rubisco biogenesis, plant photosynthesis and growth by co-expressing its ancillary RAF1 chaperone. Proc. Natl. Acad. Sci. USA (2015).

  64. 64

    Joshi, J., Mueller-Cajar, O., Tsai, Y. C., Hartl, F. U. & Hayer-Hartl, M. Role of small subunit in mediating assembly of red-type form 1 Rubisco. J. Biol. Chem. 290, 1066–1074 (2015).

    CAS  PubMed  Google Scholar 

  65. 65

    Feller, U., Anders, I. & Mae, T. Rubiscolytics: fate of Rubisco after its enzymatic function in a cell is terminated. J. Exp. Bot. 59, 1615–1624 (2008).

    CAS  PubMed  Google Scholar 

  66. 66

    Portis, A. R., Li, C. S., Wang, D. F. & Salvucci, M. E. Regulation of Rubisco activase and its interaction with Rubisco. J. Exp. Bot. 59, 1597–1604 (2008).

    CAS  PubMed  Google Scholar 

  67. 67

    Mueller-Cajar, O., Stotz, M. & Bracher, A. Maintaining photosynthetic CO2 fixation via protein remodelling: the Rubisco activases. Photosynth. Res. 119, 191–201 (2014).

    CAS  PubMed  Google Scholar 

  68. 68

    Parry, M. A. J., Keys, A. J., Madgwick, P. J., Carmo-Silva, A. E. & Andralojc, P. J. Rubisco regulation: a role for inhibitors. J. Exp. Bot. 59, 1569–1580 (2008).

    CAS  PubMed  Google Scholar 

  69. 69

    Hanson, P. I. & Whiteheart, S. W. AAA+ proteins: Have engine, will work. Nature Rev. Mol. Cell Biol. 6, 519–529 (2005).

    CAS  Google Scholar 

  70. 70

    Snider, J., Thibault, G. & Houry, W. A. The AAA+ superfamily of functionally diverse proteins. Genome Biol. 9, 216 (2008).

    PubMed  PubMed Central  Google Scholar 

  71. 71

    Wendler, P., Ciniawsky, S., Kock, M. & Kube, S. Structure and function of the AAA+ nucleotide binding pocket. Biochim. Biophys. Acta 1823, 2–14 (2012).

    CAS  PubMed  Google Scholar 

  72. 72

    Mueller-Cajar, O. et al. Structure and function of the AAA+ protein CbbX, a red-type Rubisco activase. Nature 479, 194–199 (2011).

    CAS  PubMed  Google Scholar 

  73. 73

    Stotz, M. et al. Structure of green-type Rubisco activase from tobacco. Nature Struct. Mol. Biol. 18, 1366–1370 (2011).

    CAS  Google Scholar 

  74. 74

    Henderson, J. N., Kuriata, A. M., Fromme, R., Salvucci, M. E. & Wachter, R. M. Atomic resolution X-ray structure of the substrate recognition domain of higher plant Ribulose-bisphosphate carboxylase/oxygenase (Rubisco) activase. J. Biol. Chem. 286, 35683–35688 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Bracher, A., Sharma, A., Starling-Windhof, A., Hartl, F. U. & Hayer-Hartl, M. Degradation of potent Rubisco inhibitor by selective sugar phosphatase. Nature Plants 1, 14002 (2015).

  76. 76

    Linster, C. L., Van Schaftingen, E. & Hanson, A. D. Metabolite damage and its repair or pre-emption. Nature Chem. Biol. 9, 72–80 (2013).

    CAS  Google Scholar 

  77. 77

    Blayney, M. J., Whitney, S. M. & Beck, J. L. NanoESI mass spectrometry of Rubisco and Rubisco activase structures and their interactions with nucleotides and sugar phosphates. J. Am. Soc. Mass Spectrom. 22, 1588–1601 (2011).

    CAS  PubMed  Google Scholar 

  78. 78

    Chakraborty, M. et al. Protein oligomerization monitored by fluorescence fluctuation spectroscopy: self-assembly of rubisco activase. Biophys. J. 103, 949–958 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Keown, J. R., Griffin, M. D. W., Mertens, H. D. T. & Pearce, F. G. Small oligomers of Ribulose-bisphosphate carboxylase/oxygenase (Rubisco) activase are required for biological activity. J. Biol. Chem. 288, 20607–20615 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Henderson, J. N., Hazra, S., Dunkle, A. M., Salvucci, M. E. & Wachter, R. M. Biophysical characterization of higher plant Rubisco activase. Biochim. Biophys. Acta 1834, 87–97 (2013).

    CAS  PubMed  Google Scholar 

  81. 81

    Kuriata, A. M. et al. ATP and magnesium promote cotton short-form Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase hexamer formation at low micromolar concentrations. Biochemistry 53, 7232–7246 (2014).

    CAS  PubMed  Google Scholar 

  82. 82

    Keown, J. R. & Pearce, F. G. Characterization of spinach Ribulose-1,5-bisphosphate carboxylase/oxygenase activase isoforms reveals hexameric assemblies with increased thermal stability. Biochem. J. 464, 413–423 (2014).

    CAS  PubMed  Google Scholar 

  83. 83

    Wachter, R. M. et al. Activation of interspecies-hybrid Rubisco enzymes to assess different models for the Rubisco-Rubisco activase interaction. Photosynth. Res. 117, 557–566 (2013).

    CAS  PubMed  Google Scholar 

  84. 84

    Sage, R. F., Way, D. A. & Kubien, D. S. Rubisco, Rubisco activase, and global climate change. J. Exp. Bot. 59, 1581–1595 (2008).

    CAS  PubMed  Google Scholar 

  85. 85

    Nisbet, E. G. et al. The age of Rubisco: the evolution of oxygenic photosynthesis. Geobiology 5, 311–335 (2007).

    CAS  Google Scholar 

  86. 86

    Mueller-Cajar, O. & Whitney, S. M. Directing the evolution of Rubisco and Rubisco activase: first impressions of a new tool for photosynthesis research. Photosynth. Res. 98, 667–675 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Maisnier-Patin, S. et al. Genomic buffering mitigates the effects of deleterious mutations in bacteria. Nature Genet. 37, 1376–1379 (2005).

    CAS  PubMed  Google Scholar 

  88. 88

    Tokuriki, N. & Tawfik, D. S. Stability effects of mutations and protein evolvability. Curr. Opin. Struct. Biol. 19, 596–604 (2009).

    CAS  PubMed  Google Scholar 

  89. 89

    Williams, T. A. & Fares, M. A. The effect of chaperonin buffering on protein evolution. Genome Biol. Evol. 2, 609–619 (2010).

    PubMed  PubMed Central  Google Scholar 

  90. 90

    Bogumil, D. & Dagan, T. Cumulative impact of chaperone-mediated folding on genome evolution. Biochemistry 51, 9941–9953 (2012).

    CAS  PubMed  Google Scholar 

  91. 91

    Wyganowski, K. T., Kaltenbach, M. & Tokuriki, N. GroEL/ES buffering and compensatory mutations promote protein evolution by stabilizing folding intermediates. J. Mol. Biol. 425, 3403–3414 (2013).

    CAS  PubMed  Google Scholar 

  92. 92

    Tokuriki, N. & Tawfik, D. S. Chaperonin overexpression promotes genetic variation and enzyme evolution. Nature 459, 668–671 (2009).

    CAS  PubMed  Google Scholar 

  93. 93

    Bershtein, S., Mu, W., Serohijos, A. W. R., Zhou, J. & Shakhnovich, E. I. Protein quality control acts on folding intermediates to shape the effects of mutations on organismal fitness. Mol. Cell 49, 133–144 (2013).

    CAS  PubMed  Google Scholar 

  94. 94

    Greene, D. N., Whitney, S. M. & Matsumura, I. Artificially evolved Synechococcus PCC6301 Rubisco variants exhibit improvements in folding and catalytic efficiency. Biochem. J. 404, 517–524 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Mueller-Cajar, O. & Whitney, S. M. Evolving improved Synechococcus Rubisco functional expression in Escherichia coli. Biochem. J. 414, 205–214 (2008).

    CAS  PubMed  Google Scholar 

  96. 96

    Durão, P. et al. Opposing effects of folding and assembly chaperones on evolvability of Rubisco. Nature Chem. Biol. 11, 148–155 (2015).

    Google Scholar 

  97. 97

    Zarzycki, J., Axen, S. D., Kinney, J. N. & Kerfeld, C. A. Cyanobacterial-based approaches to improving photosynthesis in plants. J. Exp. Bot. 64, 787–798 (2013).

    CAS  PubMed  Google Scholar 

  98. 98

    Lin, M. T., Occhialini, A., Andralojc, P. J., Parry, M. A. & Hanson, M. R. A faster Rubisco with potential to increase photosynthesis in crops. Nature 513, 547–550 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Notredame, C., Higgins, D. G. & Heringa, J. T-Coffee: A novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302, 205–217 (2000).

    CAS  Google Scholar 

  100. 100

    Huson, D. H. & Scornavacca, C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Systematic Biol. 61, 1061–1067 (2012).

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Manajit Hayer-Hartl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hauser, T., Popilka, L., Hartl, F. et al. Role of auxiliary proteins in Rubisco biogenesis and function. Nature Plants 1, 15065 (2015).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing