Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Diversity of nitrogen fixation strategies in Mediterranean legumes

Abstract

Symbiotic N2 fixation (SNF) brings nitrogen into ecosystems, fuelling much of the world's agriculture1 and sustaining carbon storage2,3. However, it can also cause nitrogen saturation, exacerbating eutrophication and greenhouse warming47. The balance of these effects depends on the degree to which N2-fixing plants adjust how much N2 they fix based on their needs (their SNF ‘strategies’)5,6. Genetic, biochemical and physiological details of SNF are well known for certain economically important species8,9, but the diversity of N2-fixing plants10 and bacteria11 is enormous, and little is known about most N2-fixing symbioses in natural ecosystems12. Here, we show that co-occurring, closely related herbs exhibit diverse SNF strategies. In response to a nitrogen supply gradient, four species fixed less N2 than they needed (over-regulation), two fixed what they needed (facultative) and two did not downregulate SNF (obligate). No species downregulated but fixed more N2 than it needed (under-regulation or incomplete downregulation), but some species under-regulated or incompletely downregulated structural allocation to SNF. In fact, most species maintained nodules (the root structures that house symbionts) when they did not fix N2, suggesting decoupling of SNF activity and structure. Simulations showed that over-regulation of SNF activity is more adaptive than under-regulation or incomplete downregulation, and that different strategies have wildly different effects on ecosystem-level nitrogen cycling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up to detect symbiotic N2 fixation (SNF) strategies.
Figure 2: N2 fixation responses to nitrogen addition for Medicago polymorpha and Trifolium willdenovii.
Figure 3: Simulated community and ecosystem consequences of five N2 fixation strategies.

Similar content being viewed by others

References

  1. Galloway, J. N. et al. Transformation of the nitrogen cycle. Recent trends, questions, and potential solutions. Science 320, 889–892 (2008).

    Article  CAS  Google Scholar 

  2. Gerber, S., Hedin, L. O., Oppenheimer, M., Pacala, S. W. & Shevliakova, E. Nitrogen cycling and feedbacks in a global dynamic land model. Global Biogeochem. Cy. 24, GB1001 (2010).

    Google Scholar 

  3. Batterman, S. A. et al. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession. Nature 224, 224–227 (2013).

    Article  Google Scholar 

  4. Binkley, D., Cromack, K. Jr & Baker, D. D. in The Biology and Management of Red Alder (eds Hibbs, D., DeBell, D. & Tarrant, R. ) 57–72 (Oregon State Univ. Press, 1994).

    Google Scholar 

  5. Menge, D. N. L., Levin, S. A. & Hedin, L. O. Facultative versus obligate nitrogen fixation strategies and their ecosystem consequences. Am. Nat. 174, 465–477 (2009).

    Article  Google Scholar 

  6. Hedin, L. O., Brookshire, E. N. J., Menge, D. N. L. & Barron, A. R. The nitrogen paradox in tropical forest ecosystems. Annu. Rev. Ecol. Evol. Syst. 40, 613–635 (2009).

    Article  Google Scholar 

  7. Compton, J. E., Church, M. R., Larned, S. T. & Hogsett, W. E. Nitrogen export from forested watersheds in the Oregon coast range: the role of N2-fixing red alder. Ecosystems 6, 773–785 (2003).

    Article  CAS  Google Scholar 

  8. Hartwig, U. A. The regulation of symbiotic N2 fixation: a conceptual model of N feedback from the ecosystem to the gene expression level. Plant Ecol. Evol. Syst. 1, 92–120 (1998).

    Article  Google Scholar 

  9. Dixon, R. & Kahn, D. Genetic regulation of biological nitrogen fixation. Nature Rev. Microbiol. 2, 621–631 (2004).

    Article  CAS  Google Scholar 

  10. de Faria, S. M., Lewis, G. P., Sprent, J. I. & Sutherland, J. M. Occurrence of nodulation in the Leguminosae. New Phyt. 111, 607–619 (1989).

    Article  Google Scholar 

  11. Gyaneshwar, P. et al. Legume-nodulating betaproteobacteria: diversity, host range, and future prospects. Mol. Plant Microbe Interact. 24, 1276–1288 (2011).

    Article  CAS  Google Scholar 

  12. Vitousek, P. M., Menge, D. N. L., Reed, S. C. & Cleveland, C. C. Biological nitrogen fixation: rates, patterns, and ecological controls in terrestrial ecosystems. Phil. Trans. R. Soc. B. 368, 20130119 (2013).

    Article  Google Scholar 

  13. Barron, A. R., Purves, D. W. & Hedin, L. O. Facultative nitrogen fixation by canopy legumes in a lowland tropical forest. Oecologia 165, 511–520 (2011).

    Article  Google Scholar 

  14. Sullivan, B. W. et al. Spatially robust estimates of biological nitrogen (N) fixation imply substantial human alteration of the tropical N cycle. Proc. Natl Acad. Sci. USA 111, 8101–8106 (2014).

    Article  CAS  Google Scholar 

  15. Gutschick, V. P. Evolved strategies of nitrogen acquisition by plants. Am. Nat. 118, 607–637 (1981).

    Article  CAS  Google Scholar 

  16. Bever, J. D., Broadhurst, L. M. & Thrall, P. H. Microbial phylotype composition and diversity predicts plant productivity and plant-soil feedbacks. Ecol. Lett. 16, 167–174 (2013).

    Article  Google Scholar 

  17. Drake, D. C. Invasive legumes fix N2 at high rates in riparian areas of an N-saturated, agricultural catchment. J. Ecol. 99, 515–523 (2011).

    Google Scholar 

  18. Menge, D. N. L., Lichstein, J. W. & Ángeles-Pérez, G. Nitrogen fixation strategies can explain the latitudinal shift in nitrogen-fixing tree abundance. Ecology 95, 2236–2245 (2014).

    Article  Google Scholar 

  19. Chapin, F. S. III The mineral nutrition of wild plants. Annu. Rev. Ecol. Syst. 11, 233–260 (1980).

    Article  CAS  Google Scholar 

  20. Van Wijk, M. T., Williams, M., Gough, L., Hobbie, S. E., & Shaver, G. R. Luxury consumption of soil nutrients: a possible competitive strategy in above-ground and below-ground biomass allocation and root morphology for slow-growing arctic vegetation? J. Ecol. 91, 664–676 (2003).

    Article  Google Scholar 

  21. Sprent, J. I., Ardley, J. K. & James, E. K. From North to South: a latitudinal look at legume nodulation processes. S. Afr. J. Bot. 89, 31–41 (2013).

    Article  Google Scholar 

  22. Vitousek, P. M. & Field, C. B. Ecosystem constraints to symbiotic nitrogen fixers: a simple model and its implications. Biogeochemistry 46, 179–202 (1999).

    CAS  Google Scholar 

  23. Rastetter, E. B. et al. Resource optimization and symbiotic nitrogen fixation. Ecosystems 4, 369–388 (2001).

    Article  CAS  Google Scholar 

  24. Menge, D. N. L., Levin, S. A. & Hedin, L. O. Evolutionary tradeoffs can select against nitrogen fixation and thereby maintain nitrogen limitation. Proc. Natl Acad. Sci. USA 105, 1573–1578 (2008).

    Article  CAS  Google Scholar 

  25. Kiers, E. T. & Denison, R. F. Sanctions, cooperation, and the stability of plant-rhizosphere mutualisms. Annu. Rev. Ecol. Evol. Syst. 39, 215–236 (2008).

    Article  Google Scholar 

  26. West, S. A., Kiers, E. T., Simms, E. L. & Denison, R. F. Sanctions and mutualism stability: why do rhizobia fix nitrogen? Proc. R. Soc. Lond. B 269, 685–694 (2002).

    Article  Google Scholar 

  27. Fujita, H., Aoki, S. & Kawaguchi, M. Evolutionary dynamics of nitrogen fixation in the legume-rhizobia symbiosis. PLoS ONE 9, e93670 (2014).

    Article  Google Scholar 

  28. Marco, D. E. et al. An experimental and modeling exploration of the host-sanction hypothesis in legume-rhizobia mutualism. J. Theor. Biol. 259, 423–433 (2009).

    Article  Google Scholar 

  29. Gubry-Rangin, C., Garcia, M. & Béna, G. Partner choice in Medicago trunculata-Sinorhizobium symbiosis. Proc. R. Soc. Lond. B 277, 1947–1951 (2010).

    Article  Google Scholar 

  30. Akçay, E. & Simms, E. L. Negotiation, sanctions, and context dependency in the legume-rhizobium mutualism. Am. Nat. 178, 1–14 (2011).

    Article  Google Scholar 

  31. Dowling, D. N. & Broughton, W. J. Competition for nodulation in legumes. Annu. Rev. Microbiol. 40, 131–157 (1986).

    Article  CAS  Google Scholar 

  32. Ross, C. W. Plant Physiology Laboratory Manual (Wadsworth Publishing Co., 1974).

    Google Scholar 

  33. Dawson, T. E., Mambelli, S., Plamboeck, A. H., Templer, P. H. & Tu, K. P. Stable isotopes in plant ecology. Annu. Rev. Ecol. Syst. 33, 507–559 (2002).

    Article  Google Scholar 

  34. Shearer, G. & Kohl, D. H. N2-fixation in field settings: estimations based on natural 15N abundance. Aust. J. Plant Physiol. 13, 699–756 (1986).

    CAS  Google Scholar 

  35. Andrews, M. et al. Nitrogen fixation in legumes and actinorhizal plants in natural ecosystems: values obtained using 15N natural abundance. Plant Ecol. Divers. 4, 131–140 (2011).

    Article  Google Scholar 

  36. Phillips, D. L. & Gregg, J. W. Uncertainty in source partitioning using stable isotopes. Oecologia 127, 171–179 (2001).

    Article  Google Scholar 

  37. Anderson, D. R. Model Based Inference in the Life Sciences (Springer, 2008).

    Book  Google Scholar 

  38. Bolker, B. M. Ecological Models and Data in R (Princeton Univ. Press, 2008).

    Book  Google Scholar 

  39. R Core Team R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2013).

  40. Bolker, B. M. & R Core Team bbmle: Tools for General Maximum Likelihood Estimation (2014); http://CRAN.R-project.org/package=bbmle

  41. Vitousek, P. M. & Reiners, W. A. Ecosystem succession and nutrient retention: a hypothesis. BioScience 25, 376–381 (1975).

    Article  CAS  Google Scholar 

  42. Hedin, L. O., Armesto, J. J. & Johnson, A. H. Patterns of nutrient loss from unpolluted, old-growth temperate forests: evaluation of biogeochemical theory. Ecology 76, 493–509 (1995).

    Article  Google Scholar 

  43. Hedin, L. O., Vitousek, P. M. & Matson, P. A. Nutrient losses over four million years of tropical forest development. Ecology 84, 2231–2255 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

J. Rosene-Mirvis, J. Eastling, A. Martinez, A. Marquez, M. Rosenfield, D. Hardwick and S. Buchholz helped with greenhouse work, and G. Maltais-Landry, K. Epps and N. Lincoln helped with growing medium analysis. S. Perakis, S. Batterman and P. Vitousek commented on the manuscript. P. Vitousek also provided advice and support throughout the project. Funding for the project came from the Carbon Mitigation Initiative, with funding from BP and Ford, as well as Stanford University, Columbia University and Chapman University.

Author information

Authors and Affiliations

Authors

Contributions

D.N.L.M., A.A.W. and J.L.F. designed the study, performed experiments and gathered data. D.N.L.M. developed and ran models, analysed data and was primary writer. A.A.W. and J.L.F. contributed to writing.

Corresponding author

Correspondence to Duncan N. L. Menge.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menge, D., Wolf, A. & Funk, J. Diversity of nitrogen fixation strategies in Mediterranean legumes. Nature Plants 1, 15064 (2015). https://doi.org/10.1038/nplants.2015.64

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2015.64

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene