Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Elicitin recognition confers enhanced resistance to Phytophthora infestans in potato


Potato late blight, caused by the destructive Irish famine pathogen Phytophthora infestans, is a major threat to global food security1,2. All late blight resistance genes identified to date belong to the coiled-coil, nucleotide-binding, leucine-rich repeat class of intracellular immune receptors3. However, virulent races of the pathogen quickly evolved to evade recognition by these cytoplasmic immune receptors4. Here we demonstrate that the receptor-like protein ELR (elicitin response) from the wild potato Solanum microdontum mediates extracellular recognition of the elicitin domain, a molecular pattern that is conserved in Phytophthora species. ELR associates with the immune co-receptor BAK1/SERK3 and mediates broad-spectrum recognition of elicitin proteins from several Phytophthora species, including four diverse elicitins from P. infestans. Transfer of ELR into cultivated potato resulted in enhanced resistance to P. infestans. Pyramiding cell surface pattern recognition receptors with intracellular immune receptors could maximize the potential of generating a broader and potentially more durable resistance to this devastating plant pathogen.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Solanum microdontum ELR confers response to elicitins.
Figure 2: ELR mediates broad-spectrum response to elicitins of oomycetes.
Figure 3: ELR associates with the immune co-receptor BAK1/SERK3.
Figure 4: ELR confers enhanced resistance to P. infestans in potato.


  1. 1

    Fisher, M. C. et al. Emerging fungal threats to animal, plant and ecosystem health. Nature 484, 186–194 (2012).

    CAS  Article  Google Scholar 

  2. 2

    Fry, W. E. Phytophthora infestans: the plant (and R gene) destroyer. Mol. Plant Pathol. 9, 385–402 (2008).

    Article  Google Scholar 

  3. 3

    Vleeshouwers, V. G. A. A. et al. Understanding and exploiting late blight resistance in the age of effectors. Annu. Rev. Phytopathol. 49, 507–531 (2011).

    CAS  Article  Google Scholar 

  4. 4

    Raffaele, S. et al. Genome evolution following host jumps in the Irish potato famine pathogen lineage. Science 330, 1540–1543 (2010).

    CAS  Article  Google Scholar 

  5. 5

    Haverkort, A., Struik, P., Visser, R. & Jacobsen, E. Applied biotechnology to combat late blight in potato caused by Phytophthora infestans. Potato Res. 52, 249–264 (2009).

    Article  Google Scholar 

  6. 6

    Kawchuk, L. M. et al. Tomato Ve disease resistance genes encode cell surface-like receptors. Proc. Natl Acad. Sci. USA 98, 6511–6515 (2001).

    CAS  Article  Google Scholar 

  7. 7

    Jones, D. A., Thomas, C. M., Hammond-Kosack, K. E., Balint-Kurti, P. J. & Jones, J. D. Isolation of the tomato Cf9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266, 789–793 (1994).

    CAS  Article  Google Scholar 

  8. 8

    Thomma, B. P., Van Esse, H. P., Crous, P. W. & De Wit, P. J. Cladosporium fulvum (syn. Passalora fulva), a highly specialized plant pathogen as a model for functional studies on plant pathogenic Mycosphaerellaceae. Mol. Plant Pathol. 6, 379–393 (2005).

    CAS  Article  Google Scholar 

  9. 9

    Ron, M. & Avni, A. The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell 16, 1604–1615 (2004).

    CAS  Article  Google Scholar 

  10. 10

    Song, W. Y. et al. A receptor kinase-like protein encoded by the rice disease resistance gene Xa21. Science 270, 1804–1806 (1995).

    CAS  Article  Google Scholar 

  11. 11

    Zipfel, C. & Robatzek, S. Pathogen-associated molecular pattern-triggered immunity: veni, vidi...? Plant Physiol. 154, 551–554 (2010).

    CAS  Article  Google Scholar 

  12. 12

    Ponchet, M. et al. Are elicitins cryptograms in plant-oomycete communications? Cell. Mol. Life Sci. 56, 1020–1047 (1999).

    CAS  Article  Google Scholar 

  13. 13

    Jiang, R. H. Y., Tyler, B. M., Whisson, S. C., Hardham, A. R. & Govers, F. Ancient origin of elicitin gene clusters in Phytophthora genomes. Mol. Biol. Evol. 23, 338–351 (2006).

    CAS  Article  Google Scholar 

  14. 14

    Levesque, C. A. et al. Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire. Genome Biol. 11, R73 (2010).

  15. 15

    Cooke, D. E. et al. Genome analyses of an aggressive and invasive lineage of the Irish potato famine pathogen. PLoS Pathog. 8, e1002940 (2012).

    Article  Google Scholar 

  16. 16

    Vleeshouwers, V. G. A. A. et al. Agroinfection-based high throughput screening reveals specific recognition of INF elicitins in Solanum. Mol. Plant Pathol. 7, 499–510 (2006).

    Article  Google Scholar 

  17. 17

    Torto, T. A. et al. EST mining and functional expression assays identify extracellular effector proteins from the plant pathogen Phytophthora. Genome Res. 13, 1675–1685 (2003).

    CAS  Article  Google Scholar 

  18. 18

    van Os, H. et al. Construction of a 10,000-marker ultradense genetic recombination map of potato: providing a framework for accelerated gene isolation and a genomewide physical map. Genetics 173, 1075–1087 (2006).

    CAS  Article  Google Scholar 

  19. 19

    Potato Genome Sequencing Consortium et al. Genome sequence and analysis of the tuber crop potato. Nature 475, 189–195 (2011).

  20. 20

    Chinchilla, D. et al. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448, 497–500 (2007).

    CAS  Article  Google Scholar 

  21. 21

    Heese, A. et al. The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc. Natl Acad. Sci. USA 104, 12217–12222 (2007).

    CAS  Article  Google Scholar 

  22. 22

    Chaparro-Garcia, A. et al. The receptor-like kinase SERK3/BAK1 is required for basal resistance against the late blight pathogen Phytophthora infestans in Nicotiana benthamiana. PLoS ONE 6, e16608 (2011).

    CAS  Article  Google Scholar 

  23. 23

    Bar, M. & Avni, A. EHD2 inhibits signaling of leucine rich repeat receptor-like proteins. Plant Signal. Behav. 4, 682–684 (2009).

    CAS  Article  Google Scholar 

  24. 24

    Haas, B. J. et al. Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 461, 393–398 (2009).

    CAS  Article  Google Scholar 

  25. 25

    Lacombe, S. et al. Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nature Biotechnol. 28, 365–369 (2010).

    CAS  Article  Google Scholar 

Download references


We thank Paul Birch for providing P. infestans strains 88069td and EC1_DC2005, Gert van Arkel, Nic Boerboom, Nicolas Champouret, Luigi Faino, Marjan Bergervoet and Alireza Salami for technical assistance in ELR cloning and transformation, Rients Niks, Jack Vossen and Matthieu Joosten for helpful discussions and supervision, Sebastian Schornack for excellent help with microscopy, and Cyril Zipfel for useful suggestions. This work was supported by a NWO-VIDI grant 12378 (V.G.A.A.V.), the Wageningen University Fund (WUF) (J.D.), the China Scholarship Council Program for Graduate Students (J.D.), Avebe (E.V., G.B., V.G.A.A.V.), the Gatsby Charitable Foundation (A.C.G., S.K.), the European Research Council (ERC) (A.C.G., S.K.) and the Biotechnology and Biological Sciences Research Council (BBSRC) (A.C.G., S.K.).

Author information




J.D., E.V., A.C.G., G.B., L.C.P., J.Z. and V.G.A.A.V. performed experiments and analysed data; T.W.H.L. and F.G. contributed constructs; J.D., E.V., A.C.G., E.A.G.v.d.V., C.X., J.Z., S.R., S.K. and V.G.A.A.V. designed experiments; E.A.G.v.d.V., C.X., S.R., S.K., V.G.A.A.V., E.J. and R.G.F.V. supervised; J.D., E.V., A.C.G., S.K. and V.G.A.A.V. wrote the manuscript.

Corresponding author

Correspondence to Vivianne G. A. A. Vleeshouwers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Du, J., Verzaux, E., Chaparro-Garcia, A. et al. Elicitin recognition confers enhanced resistance to Phytophthora infestans in potato. Nature Plants 1, 15034 (2015).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing