Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PsbS interactions involved in the activation of energy dissipation in Arabidopsis

Abstract

The non-photochemical quenching of light energy as heat (NPQ) is an important photoprotective mechanism that is activated in plants when light absorption exceeds the capacity of light utilization in photosynthesis. The PsbS protein plays a central role in this process and is supposed to activate NPQ through specific, light-regulated interactions with photosystem (PS) II antenna proteins. However, NPQ-specific interaction partners of PsbS in the thylakoid membrane are still unknown. Here, we have determined the localization and protein interactions of PsbS in thylakoid membranes in the NPQ-inactive (dark) and NPQ-active (light) states. Our results corroborate a localization of PsbS in PSII supercomplexes and support the model that the light activation of NPQ is based on the monomerization of dimeric PsbS and a light-induced enhanced interaction of PsbS with Lhcb1, the major component of trimeric light-harvesting complexes in PSII.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Localization of PsbS.
Figure 2: PsbS interaction partners.
Figure 3: Relative amounts of PsbS interaction partners.
Figure 4: Model for PsbS-induced conformational changes in PSII–LHCII.

Similar content being viewed by others

References

  1. Møller, I. M., Jensen, P. E. & Hansson, A. Oxidative modifications to cellular components in plants. Annu. Rev. Plant. Biol. 58, 459–481 (2007).

    Article  Google Scholar 

  2. Li, Z., Wakao, S., Fischer, B. B. & Niyogi, K. K. Sensing and responding to excess light. Annu. Rev. Plant. Biol. 60, 239–260 (2009).

    Article  CAS  Google Scholar 

  3. Graßes, T. et al. The role of ΔpH-dependent dissipation of excitation energy in protecting photosystem II against light-induced damage in Arabidopsis thaliana. Plant Physiol. Biochem. 40, 41–49 (2002).

    Article  Google Scholar 

  4. Roach, T. & Krieger-Liszkay, A. The role of the PsbS protein in the protection of photosystems I and II against high light in Arabidopsis thaliana. Biochim. Biophys. Acta 1817, 2158–2165 (2012).

    Article  CAS  Google Scholar 

  5. Havaux, M. & Niyogi, K. K. The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc. Natl Acad. Sci. USA 96, 8762–8767 (1999).

    Article  CAS  Google Scholar 

  6. Külheim, C., Agren, J. & Jansson, S. Rapid regulation of light harvesting and plant fitness in the field. Science 297, 91–93 (2002).

    Article  Google Scholar 

  7. Külheim, C. & Jansson, S. What leads to reduced fitness in non-photochemical quenching mutants? Physiol. Plant. 125, 202–211 (2005).

    Article  Google Scholar 

  8. Gollan, P. J., Tikkanen, M. & Aro, E. M. Photosynthetic light reactions: integral to chloroplast retrograde signalling. Curr. Opin. Plant Biol. 27, 180–191 (2015).

    Article  CAS  Google Scholar 

  9. Tikkanen, M., Rantala, S. & Aro, E. M. Electron flow from PSII to PSI under high light is controlled by PGR5 but not by PSBS. Front. Plant Sci. 6, 521 (2015).

    Article  Google Scholar 

  10. Nilkens, M. et al. Identification of a slowly inducible zeaxanthin-dependent component of non-photochemical quenching of chlorophyll fluorescence generated under steady-state conditions in Arabidopsis. Biochim. Biophys. Acta 1797, 466–475 (2010).

    Article  CAS  Google Scholar 

  11. Briantais, J. M., Vernotte, C., Picaud, M. & Krause, G. H. A quantitative study of the slow decline of chlorophyll a fluorescence in isolated chloroplasts. Biochim. Biophys. Acta 548, 128–138 (1979).

    Article  CAS  Google Scholar 

  12. Li, X. et al. A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403, 391–395 (2000).

    Article  CAS  Google Scholar 

  13. Li, X. P. et al. Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. J. Biol. Chem. 279, 22866–22874 (2004).

    Article  CAS  Google Scholar 

  14. Betterle, N. et al. Light-induced dissociation of an antenna hetero-oligomer is needed for non-photochemical quenching induction. J. Biol. Chem. 284, 15255–15266 (2009).

    Article  CAS  Google Scholar 

  15. Holzwarth, A. R., Miloslavina, Y., Nilkens, M. & Jahns, P. Identification of two quenching sites active in the regulation of photosynthetic light-harvesting studied by time-resolved fluorescence. Chem. Phys. Lett. 483, 262–267 (2009).

    Article  CAS  Google Scholar 

  16. Horton, P., Wentworth, M. & Ruban, A. Control of the light harvesting function of chloroplast membranes: The LHCII-aggregation model for non-photochemical quenching. FEBS Lett. 579, 4201–4206 (2005).

    Article  CAS  Google Scholar 

  17. Caffarri, S., Kouřil, R., Kereϊche, S., Boekema, E. J. & Croce, R. Functional architecture of higher plant photosystem II supercomplexes. EMBO J. 28, 3052–3063 (2009).

    Article  CAS  Google Scholar 

  18. Nield, J., Funk, C. & Barber, J. Supermolecular structure of photosystem II and location of the PsbS protein. Philos. Trans. R. Soc. Lond. B Biol. Sci. 355, 1337–1344 (2000).

    Article  CAS  Google Scholar 

  19. Fey, H. et al. Isolation of highly active photosystem II core complexes with a His-tagged Cyt b559 subunit from transplastomic tobacco plants. Biochim. Biophys. Acta 1777, 1501–1509 (2008).

    Article  CAS  Google Scholar 

  20. Haniewicz, P. et al. Isolation of monomeric photosystem II that retains the subunit PsbS. Photosyn. Res. 118, 199–207 (2013).

    Article  CAS  Google Scholar 

  21. Kiss, A. Z., Ruban, A. V. & Horton, P. The PsbS protein controls the organization of the photosystem II antenna in higher plant thylakoid membranes. J. Biol. Chem. 283, 3972–3978 (2008).

    Article  CAS  Google Scholar 

  22. Kereϊche, S., Kiss, A. Z., Kouřil, R., Boekema, E. J. & Horton, P. The PsbS protein controls the macro-organisation of photosystem II complexes in the grana membranes of higher plant chloroplasts. FEBS Lett. 584, 759–764 (2010).

    Article  Google Scholar 

  23. Bergantino, E. et al. Light- and pH-dependent structural changes in the PsbS subunit of photosystem II. Proc. Natl Acad. Sci. USA 100, 15265–15270 (2003).

    Article  CAS  Google Scholar 

  24. Teardo, E. et al. Evidences for interaction of PsbS with photosynthetic complexes in maize thylakoids. Biochim. Biophys. Acta 1767, 703–711 (2007).

    Article  CAS  Google Scholar 

  25. Aspinall-O'Dea, M. et al. In vitro reconstitution of the activated zeaxanthin state associated with energy dissipation in plants. Proc. Natl Acad. Sci. USA 99, 16331–16335 (2002).

    Article  CAS  Google Scholar 

  26. Dominici, P. et al. Biochemical properties of the PsbS subunit of photosystem II either purified from chloroplast or recombinant. J. Biol. Chem. 277, 22750–22758 (2002).

    Article  CAS  Google Scholar 

  27. Gerotto, C., Franchin, C., Arrigoni, G. & Morosinotto, T. In vivo identification of photosystem II light harvesting complexes interacting with photosystem II subunit S. Plant Physiol. 168, 1747–1761 (2015).

    Article  CAS  Google Scholar 

  28. Wilka, L., Grunwald, M., Liaoc, P., Jomo Wallab, P. & Kühlbrandta, W. Direct interaction of the major light-harvesting complex II and PsbS in nonphotochemical quenching. Proc. Natl Acad. Sci. USA 110, 5452–5456 (2013).

    Article  Google Scholar 

  29. Kouřil, R., Dekker, J. P. & Boekema, E. J. Supramolecular organization of photosystem II in green plants. Biochim. Biophys. Acta 1817, 2–12 (2012).

    Article  Google Scholar 

  30. Johnson, M. P. et al. Photoprotective energy dissipation involves the reorganization of photosystem II light-harvesting complexes in the grana membranes of spinach chloroplasts. Plant Cell 23, 1468–1479 (2011).

    Article  CAS  Google Scholar 

  31. Horton, P. Optimization of light harvesting and photoprotection: molecular mechanisms and physiological consequences. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 3455–3465 (2012).

    Article  CAS  Google Scholar 

  32. Fan, M. et al. Crystal structures of the PsbS protein essential for photoprotection in plants. Nature Struct. Mol. Biol. 22, 729–735 (2015).

    Article  CAS  Google Scholar 

  33. Pietrzykowska, M. et al. The light-harvesting chlorophyll a/b binding proteins Lhcb1 and Lhcb2 play complementary roles during state transitions in Arabidopsis. Plant Cell 26, 3646–3660 (2014).

    Article  CAS  Google Scholar 

  34. Li, X. P., Müller-Moulé, P., Gilmore, A. M. & Niyogi, K. K. PsbS-dependent enhancement of feedback de-excitation protects photosystem II from photoinhibition. Proc. Natl Acad. Sci. USA 99, 15222–15227 (2002).

    Article  CAS  Google Scholar 

  35. Schwarz, N. et al. Tissue-specific accumulation and regulation of zeaxanthin epoxidase in Arabidopsis reflect the multiple functions of the enzyme in plastids. Plant Cell Physiol. 56, 346–357 (2014).

    Article  Google Scholar 

  36. Färber, A., Young, A. Y., Ruban, A., Horton, P. & Jahns, P. Dynamics of xanthophyll-cycle activity in different antenna subcomplexes in the photosynthetic membranes of higher plants (the relationship between zeaxanthin conversion and nonphotochemical fluorescence quenching). Plant Physiol. 115, 1609–1618 (1997).

    Article  Google Scholar 

  37. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    Article  CAS  Google Scholar 

  38. Poschmann, G. et al. High-fat diet induced isoform changes of the Parkinson's disease protein DJ-1. J. Proteome Res. 13, 2339–2351 (2014).

    Article  CAS  Google Scholar 

  39. Cox, J. et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MAXLFQ. Mol. Cell Proteomics 13, 2513–2526 (2014).

    Article  CAS  Google Scholar 

  40. Pagliano, C. et al. Proteomic characterization and three-dimensional electron microscopy study of PSII-LHCII supercomplexes from higher plants. Biochim. Biophys. Acta 1837, 1454–1462 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Deutsche Forschungsgemeinschaft (GRK 1525 to P.J.). We thank M. Benecke and K. Hoffie (IPK Gatersleben) for their highly skilled technical support.

Author information

Authors and Affiliations

Authors

Contributions

V.C.G., G.P. and P.J. designed the experiments; V.C.G. performed the experiments; G.P. and K.S. performed mass spectrometry and analysed data; M.M. performed the electron microscopy; V.C.G. and P.J. wrote the paper.

Corresponding author

Correspondence to Peter Jahns.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Correa-Galvis, V., Poschmann, G., Melzer, M. et al. PsbS interactions involved in the activation of energy dissipation in Arabidopsis. Nature Plants 2, 15225 (2016). https://doi.org/10.1038/nplants.2015.225

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2015.225

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing