Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Organic agriculture in the twenty-first century


Organic agriculture has a history of being contentious and is considered by some as an inefficient approach to food production. Yet organic foods and beverages are a rapidly growing market segment in the global food industry. Here, we examine the performance of organic farming in light of four key sustainability metrics: productivity, environmental impact, economic viability and social wellbeing. Organic farming systems produce lower yields compared with conventional agriculture. However, they are more profitable and environmentally friendly, and deliver equally or more nutritious foods that contain less (or no) pesticide residues, compared with conventional farming. Moreover, initial evidence indicates that organic agricultural systems deliver greater ecosystem services and social benefits. Although organic agriculture has an untapped role to play when it comes to the establishment of sustainable farming systems, no single approach will safely feed the planet. Rather, a blend of organic and other innovative farming systems is needed. Significant barriers exist to adopting these systems, however, and a diversity of policy instruments will be required to facilitate their development and implementation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Annual global market for organic foods and land area of organic production.
Figure 2: Organic management practices.
Figure 3: Hypothetical nitrogen stocks and flows of two contrasting cropping systems.
Figure 4: Assessment of organic farming relative to conventional farming in the four major areas of sustainability.
Figure 5: Policy instruments for overcoming barriers to farmers adopting more sustainable farming systems.


  1. 1

    Lockeretz, W. in Organic Farming: An International History (ed. Lockeretz, W. ) 1–8 (CABI, 2007).

    Book  Google Scholar 

  2. 2

    Trewavas, A. Urban myths of organic farming. Nature 410, 409–410 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3

    Emsley, J. Going one better than nature? Nature 410, 633–634 (2001).

    Article  Google Scholar 

  4. 4

    Kirchmann, H. & Thorvaldsson, G. Challenging targets for future agriculture. Eur. J. Agron. 12, 145–161 (2000).

    Article  Google Scholar 

  5. 5

    Connor, D. J. & Mí nguez, M. I. Evolution not revolution of farming systems will best feed and green the world. Glob. Food Secur. 1, 106–113 (2012).

    Article  Google Scholar 

  6. 6

    Pickett, J. A. Food security: intensification of agriculture is essential, for which current tools must be defended and new sustainable technologies invented. Food Energ. Secur. 2, 167–173 (2013).

    Article  Google Scholar 

  7. 7

    Willer, H. & Lernoud, J. (eds) The World of Organic Agriculture: Statistics and Emerging Trends 2015 (FiBL-IFOAM, 2015).

    Google Scholar 

  8. 8

    International Assessment of Agricultural Science and Technology for Development Agriculture at a Crossroads: Global Report (Island, 2009).

  9. 9

    De Schutter, O. Report Submitted by the Special Rapporteur on the Right to Food (United Nations, 2010).

    Google Scholar 

  10. 10

    National Research Council Toward Sustainable Agricultural Systems in the 21st Century (The National Academies, 2010).

  11. 11

    Food and Agriculture Organization of the United Nations FAOSTAT Online Database (accessed August 2015);

  12. 12

    Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  13. 13

    Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14

    Amundson, R. et al. Soil and human security in the 21st century. Science 348, 1261071 (2015).

    Article  CAS  Google Scholar 

  15. 15

    Stanhill, G. The comparative productivity of organic agriculture. Agr. Ecosyst. Environ. 30, 1–26 (1990).

    Article  Google Scholar 

  16. 16

    Badgley, C. et al. Organic agriculture and the global food supply. Renew. Agr. Food Syst. 22, 86–108 (2007).

    Article  Google Scholar 

  17. 17

    de Ponti, T., Rijk, B. & van Ittersum, M. K. The crop yield gap between organic and conventional agriculture. Agr. Syst. 108, 1–9 (2012).

    Article  Google Scholar 

  18. 18

    Seufert, V., Ramankutty, N. & Foley, J. A. Comparing the yields of organic and conventional agriculture. Nature 485, 229–232 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19

    Ponisio, L. C. et al. Diversification practices reduce organic to conventional yield gap. Proc. R. Soc. B 282, 20141396 (2015).

    Article  Google Scholar 

  20. 20

    Crowder, D. W. & Reganold, J. P. Financial competitiveness of organic agriculture on a global scale. Proc. Natl Acad. Sci. USA 112, 7611–7616 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21

    Lockeretz, W., Shearer, G. & Kohl, D. H. Organic farming in the Corn Belt. Science 211, 540–547 (1981).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22

    Lotter, D., Seidel, R. & Liebhardt, W. The performance of organic and conventional cropping systems in an extreme climate year. Am. J. Alternative Agr. 18, 146–154 (2003).

    Article  Google Scholar 

  23. 23

    Siegrist, S., Scaub, D., Pfiffner, L. & Mäder, L. Does organic agriculture reduce soil erodability? The results of a long-term field study on loess in Switzerland. Agr. Ecosyst. Environ. 69, 253–264 (1998).

    Article  Google Scholar 

  24. 24

    Murphy, K. M., Campbell, K. G., Lyon, S. R. & Jones, S. S. Evidence of varietal adaptation to organic farming systems. Field Crop. Res. 102, 172–177 (2007).

    Article  Google Scholar 

  25. 25

    Baker, B. P., Benbrook, C. M., Groth, E. III & Benbrook, K. L. Pesticide residues in conventional, integrated pest management (IPM)-grown and organic foods: insights from three US data sets. Food Addit. Contam. 19, 427–446 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26

    Smith-Spangler, C. et al. Are organic foods safer or healthier than conventional alternatives? Ann. Intern. Med. 157, 348–366 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  27. 27

    Barański, M. et al. Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: a systematic literature review and meta-analyses. Brit. J. Nutr. 112, 794–811 (2014).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  28. 28

    Pussemier, L., Larondelle, Y., Van Peteghem, C. & Huyghebaert, A. Chemical safety of conventionally and organically produced foodstuffs: a tentative comparison under Belgian conditions. Food Control 17, 14–21 (2006).

    CAS  Article  Google Scholar 

  29. 29

    Curl, C. L., Fenske, R. A. & Elgethun, K. Organophosphorus pesticide exposure of urban and suburban preschool children with organic and conventional diets. Environ. Health Persp. 111, 377–382 (2003).

    CAS  Article  Google Scholar 

  30. 30

    Lu, C. et al. Organic diets significantly lower children's dietary exposure to organophosphorus pesticides. Environ. Health Persp. 114, 260–263 (2006).

    CAS  Article  Google Scholar 

  31. 31

    Forman, J. et al. Organic foods: health and environmental advantages and disadvantages. Pediatrics 130 e1406–e1415 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  32. 32

    Soil Association Organic Farming, Food Quality and Human Health: A Review of the Evidence (Soil Association, 2000);

  33. 33

    Brandt, K. & Mølgaard, J. P. Organic agriculture: does it enhance or reduce the nutritional value of plant foods? J. Sci. Food Agr. 81, 924–931 (2001).

    CAS  Article  Google Scholar 

  34. 34

    Worthington, V. Nutritional quality of organic versus conventional fruits, vegetables, and grains. J. Alter. Complem. Med. 7, 161–173 (2001).

    CAS  Article  Google Scholar 

  35. 35

    Bourn, D. & Prescott, J. A comparison of the nutritional value, sensory qualities, and food safety of organically and conventionally produced foods. Critical Rev. Food Sci. 42, 1–34 (2002).

    Article  Google Scholar 

  36. 36

    Williams, C. M. Nutritional quality of organic food: shades of grey or shades of green? Proc. Nutr. Soc. 61, 19–24 (2002).

    PubMed  Article  PubMed Central  Google Scholar 

  37. 37

    Magkos, F., Arvaniti, F. & Zampelas, A. Organic food: nutritious food or food for thought? A review of the evidence. Int. J. Food Sci. Nutr. 54, 357–371 (2003).

    PubMed  Article  PubMed Central  Google Scholar 

  38. 38

    Rembialkowska, E. Quality of plant products from organic agriculture. J. Sci. Food Agr. 87, 2757–2762 (2007).

    CAS  Article  Google Scholar 

  39. 39

    Benbrook, C., Zhao, X., Yáñez, J., Davies, N. & Andrews, P. New Evidence Confirms the Nutritional Superiority of Plant-based Organic Foods (The Organic Center, 2008);

    Google Scholar 

  40. 40

    Dangour, A. D. et al. Nutritional quality of organic foods: a systematic review. Am. J. Clin. Nutr. 90, 680–685 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41

    Hunter, D. et al. Evaluation of the micronutrient composition of plant foods produced by organic and conventional agricultural methods. Crit. Rev. Food Sci. 51, 571–582 (2011).

    CAS  Article  Google Scholar 

  42. 42

    Lairon, D. Nutritional quality and safety of organic food: a review. Agron. Sustain. Dev. 30, 33–41 (2010).

    CAS  Article  Google Scholar 

  43. 43

    Brandt, K., Leifert, C., Sanderson, R. & Seal, C. J. Agroecosystem management and nutritional quality of plant foods: the case of organic fruits and vegetables. Crit. Rev. Plant Sci. 30, 177–197 (2011).

    CAS  Article  Google Scholar 

  44. 44

    Palupi, E., Jayanegara, A., Ploeger, A. & Kahl, J. Comparison of nutritional quality between conventional and organic dairy products: a meta-analysis. J. Sci. Food. Agr. 92, 2774–2781 (2012).

    CAS  Article  Google Scholar 

  45. 45

    Gattinger, A. et al. Enhanced top soil carbon stocks under organic farming. Proc. Natl Acad. Sci. USA 109, 18226–18231 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46

    Alföldi, T. et al. in Organic Agriculture, Environment, and Food Security (eds Scialabba, N. E.-H. & Hattam, C. ) Ch. 2 (FAO, 2002);

    Google Scholar 

  47. 47

    Kaspercyk, N. & Knickel, K. in Organic Agriculture: A Global Perspective (eds Kristiansen, P., Taji, A. & Reganold, J. ) 259–294 (CSIRO, 2006).

    Google Scholar 

  48. 48

    Tuomisto, H. L., Hodge, I. D., Riordan, P. & Macdonald, D. W. Does organic farming reduce environmental impacts? A meta-analysis of European research. J. Environ. Manage. 112, 309–320 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49

    Mondelaers, K., Aertsens, J. & Van Huylenbroeck, G. A meta-analysis of the differences in environmental impacts between organic and conventional farming. Brit. Food. J. 111, 1098–1119 (2009).

    Article  Google Scholar 

  50. 50

    Gomiero, T., Pimentel, D. & Paoletti, M. G. Environmental impact of different agricultural management practices: conventional vs. organic agriculture. Crit. Rev. Plant Sci. 30, 95–124 (2011).

    Article  Google Scholar 

  51. 51

    Lynch, D. H., Halberg, N. & Bhatta, G. D. Environmental impacts of organic agriculture in temperate regions. CAB Rev. 7, 1–17 (2012).

    Article  Google Scholar 

  52. 52

    Tuck, S. et al. Land-use intensity and the effects of organic farming on biodiversity: a hierarchical meta-analysis. J. Appl. Ecol. 51, 746–755 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  53. 53

    Kennedy C. M. et al. A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol. Lett. 16, 584–599 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  54. 54

    Lotter, D. W. Organic agriculture. J. Sustain. Agr. 21, 59–128 (2003).

    Article  Google Scholar 

  55. 55

    Crowder, D. W., Northfield, T. D., Strand, M. R. & Snyder, W. E. Organic agriculture promotes evenness and natural pest control. Nature 466, 109–112 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56

    Geiger, F. et al. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl. Ecol. 11, 97–105 (2010).

    CAS  Article  Google Scholar 

  57. 57

    Skinner, S. et al. Greenhouse gas fluxes from agricultural soils under organic and non-organic management — a global meta-analysis. Sci. Total Environ. 468, –469, 553–563 (2014).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  58. 58

    Lee, K. S., Choe, Y. C. & Park, S. H. Measuring the environmental effects of organic farming: a meta-analysis of structural variables in empirical research. J. Environ. Manage. 162, 263–274 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. 59

    Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

  60. 60

    Halberg, N., Sulser, T. B., Høgh-Jensen, H., Rosegrant, M. W. & Knudsen, M. T. in Global Development of Organic Agriculture: Challenges and Prospects (eds Halberg, N. et al.) 277–322 (CABI, 2006).

    Book  Google Scholar 

  61. 61

    Zentner, R. P. et al. Effects of input management and crop diversity on economic returns and riskiness of cropping systems in the semi-arid Canadian Prairie. Renew. Agr. Food Syst. 26, 208–223 (2011).

    Article  Google Scholar 

  62. 62

    Prihtanti, T. M., Hardyastuti, S., Hartono, S. & Irham Social-cultural functions of rice farming systems. Asian J. Agr. Rural Dev. 4, 341–351 (2014).

    Google Scholar 

  63. 63

    Mendoza, T. C. Evaluating the benefits of organic farming in rice agroecosystems in the Philippines. J. Sustain. Agr. 24, 93–115 (2004).

    Article  Google Scholar 

  64. 64

    Pretty, J. N., Ball, A. S., Lang, T. & Morison, J. I. L. Farm costs and food miles: an assessment of the full cost of the UK weekly food basket. Food Policy 30, 1–19 (2005).

    Article  Google Scholar 

  65. 65

    Kremen, C. & Miles, A. Ecosystem services in biologically diversified versus conventional farming systems: benefits, externalities, and trade-offs. Ecol. Soc. 17, 40 (2012).

  66. 66

    Andersson, G. K. S., Rundlöf, M. & Smith, H. G. Organic farming improves pollination success in strawberries. PLoS One 7, e31599 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. 67

    Porter, J., Costanza, R., Sandhu, H., Sigsgaard, L. & Wratten, S. The value of producing food, energy, and ecosystem services within an agro-ecosystem. Ambio 38, 186–193 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  68. 68

    Sandhu, H. et al. Significance and value of non-traded ecosystem services on farmland. PeerJ 3 e762 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  69. 69

    Östman, Ö., Ekbom, B. & Bengtsson, J. Yield increase attributable to aphid predation by ground-living polyphagous natural enemies in spring barley in Sweden. Ecol. Econ. 45, 149–158 (2003).

    Article  Google Scholar 

  70. 70

    Sandhu, H. S., Wratten, S. D. & Cullen, R. The role of supporting ecosystem services in conventional and organic arable farmland. Ecol. Complex. 7, 302–310 (2010).

    Article  Google Scholar 

  71. 71

    MacRae, R. J., Frick, B. & Martin, R. C. Economic and social impacts of organic production systems. Can. J. Plant Sci. 87, 1037–1044 (2007).

    Article  Google Scholar 

  72. 72

    Gruère, G., Nagarajan, L. & King, E. D. I. O. The role of collective action in the marketing of underutilized plant species: lessons from a case study on minor millets in South India. Food Policy 34, 39–45 (2009).

    Article  Google Scholar 

  73. 73

    Eddleston, M. et al. Pesticide poisoning in the developing world — a minimum pesticides list. Lancet 360, 1163–1167 (2002).

    PubMed  Article  PubMed Central  Google Scholar 

  74. 74

    Thundiyil, J. G., Stober, J., Besbelli, N. & Pronczuk, J. Acute pesticide poisoning: a proposed classification tool. Bull. World Health Organ. 86, 205–209 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  75. 75

    International Federation of Organic Agriculture Movements The IFOAM Norms for Organic Production and Processing, Version 2014 (IFOAM, 2014);

  76. 76

    USDA Agricultural Marketing Service National Organic Program Handbook (USDA, 2015);

  77. 77

    Council of the European Union Council Regulation (EC) No 834/2007 of 28 June 2007 on Organic Production and Labeling of Organic Products and Repealing Regulation (EEC) No 2092/91 (Official Journal of the European Union, 2008);

  78. 78

    Japan Ministry of Agriculture, Forestry and Fisheries Notification No. 1608 Japanese Agricultural Standard for Organic Livestock Products (MAFF, 2012);

  79. 79

    Parrott, N., Olesen, J. E. & Høgh-Jensen, H. in Global Development of Organic Agriculture: Challenges and Prospects (eds Halberg, N. et al.) 153–179 (CABI, 2006).

    Book  Google Scholar 

  80. 80

    Bachman, L., Cruzada, E. & Wright, S. Food Security and Farmer Empowerment: A Study of the Impacts of Farmer-Led Sustainable Agriculture in the Philippines (MASIPAG, 2009).

    Google Scholar 

  81. 81

    Reganold, J. P. et al. Transforming US agriculture. Science 332, 670–671 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  82. 82

    Food and Agriculture Organization FAO Statistical Pocketbook 2015: World Food and Agriculture (FAO, 2015).

  83. 83

    World Health Organization Obesity and Overweight, Fact Sheet #311 (WHO, 2015);

  84. 84

    Food and Agriculture Organization, International Fund for Agricultural Development & World Food Programme The State of Food Insecurity in the World 2015 (FAO, 2015).

  85. 85

    Jackson, L. L. Who “designs” the agricultural landscape? Landscape J. 27, 23–40 (2008).

    Article  Google Scholar 

  86. 86

    Sharifi, O. et al. Barriers to conversion to organic farming: a case study in Babol County in Iran. Afr. J. Agr. Res. 5, 2260–2267 (2010).

    Google Scholar 

  87. 87

    Constance, D. & Choi, J. Y. Overcoming the barriers to organic adoption in the United States: a look at pragmatic conventional producers in Texas. Sustainability 2, 163–188 (2010).

    Article  Google Scholar 

  88. 88

    UNCTAD Trade and Environment Review 2013 (United Nations Publication, 2013).

  89. 89

    Stolze, M. & Lampkin, N. Policy for organic farming: rationale and concepts. Food Policy 34, 237–244 (2009).

    Article  Google Scholar 

  90. 90

    Pretty, J. & Bharucha Z. P. Sustainable intensification in agricultural systems. Ann. Bot. 114, 1571–1596 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  91. 91

    Organisation for Economic Co-operation and Development Policy Instruments to Support Green Growth in Agriculture (OECD Publishing, 2013).

  92. 92

    Sanchez, P. A. Tripling crop yields in tropical Africa. Nature Geosci. 3, 299–300 (2010).

    CAS  Article  Google Scholar 

  93. 93

    Office of Communications Agriculture Secretary Vilsack unveils vision for US organic agriculture. USDA News Release No. 0096.13 (2013);

  94. 94

    Reganold, J. P., Glover, J. D., Andrews, P. K. & Hinman, H. R. Sustainability of three apple production systems. Nature 410, 926–930 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  95. 95

    Davis, A. S., Hill, J. D., Chase, C. A., Johanns, A. M. & Liebman, M., Increasing cropping system diversity balances productivity, profitability and environmental health. PLoS One 7, e47149 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. 96

    Wachter, J. M. & Reganold, J. P. in Encyclopedia of Agriculture and Food Systems (ed. Van Alfen, N. ) 265–286 (Elsevier, 2014).

    Book  Google Scholar 

  97. 97

    Willer, H., Lernoud, J. & Kilcher, L. (eds) The World of Organic Agriculture: Statistics and Emerging Trends 2013 (FiBL-IFOAM, 2013).

    Google Scholar 

  98. 98

    Willer, H. & Lernoud, J. (eds) The World of Organic Agriculture: Statistics and Emerging Trends 2014 (FiBL-IFOAM, 2014).

    Google Scholar 

  99. 99

    Stockdale, E. A. et al. Agronomic and environmental implications of organic farming systems. Adv. Agron. 70, 261–327 (2001).

    Article  Google Scholar 

  100. 100

    Institute of Medicine & National Research Council A Framework for Assessing Effects of the Food System (The National Academies, 2015).

Download references


J.M.W. is supported by NSF-IGERT (0903714) and USDA-NIFA (230470).

Author information




J.P.R. and J.M.W. contributed equally to the concept, outline and writing of the manuscript, including generating the figures.

Corresponding author

Correspondence to John P. Reganold.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Reganold, J., Wachter, J. Organic agriculture in the twenty-first century. Nature Plants 2, 15221 (2016).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing