Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Blocking miR396 increases rice yield by shaping inflorescence architecture


Strategies to increase rice productivity to meet the global demand have been the main concern of breeders around the world. Although a growing number of functional genes related to crop yield have been characterized, our understanding of its associated regulatory pathways is limited. Using rice as a model, we find that blocking miR396 greatly increases grain yield by modulating development of auxiliary branches and spikelets through direct induction of the growth regulating factor 6 (OsGRF6) gene. The upregulation of OsGRF6 results in the coordinated activation of several immediate downstream biological clades, including auxin (IAA) biosynthesis, auxin response factors, and branch and spikelet development-related transcription factors. This study describes a conserved microRNA (miRNA)-dependent regulatory module that integrates inflorescence development, auxin biosynthesis and signalling pathways, and could potentially be used in engineering high-yield crop plants.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Phenotypes of miR396b overexpression (OE) and miR396 mimicry (MIM) transgenic rice.
Figure 2: Phenotypes and agronomic traits of OsGRF6, OsGRF8 and OsGRF9 overexpression (OE) transgenic plants.
Figure 3: | Plant phenotypes and grain yield of OsGRF6 associated transgenic rice lines.
Figure 4: CHIP-seq analysis of the OsGRF6 protein-bound cis-element and promoters of related genes.
Figure 5: A model of the miR396b-GRF6 module for the regulation of rice grain yield.


  1. 1

    McClung, C. R. Making hunger yield. Science 344, 699–700 (2014).

    CAS  Article  Google Scholar 

  2. 2

    Xing, Y. & Zhang, Q. Genetic and molecular bases of rice yield. Annu. Rev. Plant Biol. 61, 421–442 (2010).

    CAS  Article  Google Scholar 

  3. 3

    Sreenivasulu, N. & Schnurbusch, T. A genetic playground for enhancing grain number in cereals. Trends Plant Sci. 17, 91–101 (2012).

    CAS  Article  Google Scholar 

  4. 4

    Jones-Rhoades, M. W., Bartel, D. P. & Bartel, B. MicroRNAs and their regulatory roles in plants. Annu. Rev. Plant Biol. 57, 19–53 (2006).

    CAS  Article  Google Scholar 

  5. 5

    He, L. & Hannon, G. J. MicroRNAs: small RNAs with a big role in gene regulation. Nature Rev. Genet. 5, 522–531 (2004).

    CAS  Article  Google Scholar 

  6. 6

    Chen, X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303, 2022–2025 (2004).

    CAS  Article  Google Scholar 

  7. 7

    Mallory, A. C. & Vaucheret, H. Functions of microRNAs and related small RNAs in plants. Nature Genet. 38, S31–S36 (2006).

    CAS  Article  Google Scholar 

  8. 8

    Navarro, L. et al. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312, 436–439 (2006).

    CAS  Article  Google Scholar 

  9. 9

    Jiao, Y. et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nature Genet. 42, 541–544 (2010).

    CAS  Article  Google Scholar 

  10. 10

    Lu, Z. et al. Genome-wide binding analysis of the transcription activator IDEAL PLANT ARCHITECTURE1 reveals a complex network regulating rice plant architecture. Plant Cell 25, 3743–3759 (2013).

    CAS  Article  Google Scholar 

  11. 11

    Miura, K. et al. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nature Genet. 42, 545–549 (2010).

    CAS  Article  Google Scholar 

  12. 12

    Zhang, Y.-C. et al. Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. Nature Biotech. 31, 848–852 (2013).

    CAS  Article  Google Scholar 

  13. 13

    Yoshida, A. et al. TAWAWA1, a regulator of rice inflorescence architecture, functions through the suppression of meristem phase transition. Proc. Natl Acad. Sci. USA 110, 767–772 (2012).

    Article  Google Scholar 

  14. 14

    Yoshida, A., Ohmori, Y., Kitano, H., Taguchi-Shiobara, F. & Hirano, H.-Y. Aberrant spikelet and panicle1, encoding a TOPLESS-related transcriptional co-repressor, is involved in the regulation of meristem fate in rice. Plant J. 70, 327–339 (2012).

    CAS  Article  Google Scholar 

  15. 15

    Ikeda, K., Ito, M., Nagasawa, N., Kyozuka, J. & Nagato, Y. Rice ABERRANT PANICLE ORGANIZATION 1, encoding an F-box protein, regulates meristem fate. Plant J. 51, 1030–1040 (2007).

    CAS  Article  Google Scholar 

  16. 16

    Oikawa, T. & Kyozuka, J. Two-step regulation of LAX PANICLE1 protein accumulation in axillary meristem formation in rice. Plant Cell 21, 1095–1108 (2009).

    CAS  Article  Google Scholar 

  17. 17

    Bazin, J. et al. MiR396 affects mycorrhization and root meristem activity in the legume Medicago truncatula. Plant J. 74, 920–934 (2013).

    CAS  Article  Google Scholar 

  18. 18

    Rodriguez, R. E. et al. Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Development 137, 103–112 (2010).

    CAS  Article  Google Scholar 

  19. 19

    Liu, H. et al. OsmiR396d-regulated OsGRFs function in floral organogenesis in rice through binding to their targets OsJMJ706 and OsCR4. Plant Physiol. 165, 160–174 (2014).

    CAS  Article  Google Scholar 

  20. 20

    Debernardi, J. M., Rodriguez, R. E., Mecchia, M. A. & Palatnik, J. F. Functional specialization of the plant miR396 regulatory network through distinct microRNA–target interactions. PLoS Genet. 8, e1002419 (2012).

    CAS  Article  Google Scholar 

  21. 21

    Kyozuka, J., Tokunaga, H. & Yoshida, A. Control of grass inflorescence form by the fine-tuning of meristem phase change. Curr. Opin. Plant Biol. 17, 110–115 (2014).

    CAS  Article  Google Scholar 

  22. 22

    Feng, J., Liu, T., Qin, B., Zhang, Y. & Liu, X. S. Identifying ChIP-seq enrichment using MACS. Nat. Protoc. 7, 1728–1740 (2012).

    CAS  Article  Google Scholar 

  23. 23

    Gao, X. et al. The SEPALLATA-like gene OsMADS34 is required for rice inflorescence and spikelet development. Plant Physiol. 153, 728–740 (2010).

    CAS  Article  Google Scholar 

  24. 24

    Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protoc. 4, 44–57 (2009).

    Article  Google Scholar 

  25. 25

    Peer, W. A. From perception to attenuation: auxin signalling and responses. Curr. Opin. Plant Biol. 16, 561–568 (2013).

    CAS  Article  Google Scholar 

  26. 26

    Gallavotti, A. et al. Sparse inflorescence1 encodes a monocot-specific YUCCA-like gene required for vegetative and reproductive development in maize. Proc. Natl Acad. Sci. 105, 15196–15201 (2008).

    CAS  Article  Google Scholar 

  27. 27

    Tanaka, W., Pautler, M., Jackson, D. & Hirano, H.-Y. Grass meristems II: inflorescence architecture, flower development and meristem fate. Plant Cell Physiol. 54, 313–324 (2013).

    CAS  Article  Google Scholar 

  28. 28

    Zhang, D. & Yuan, Z. Molecular control of grass inflorescence development. Annu. Rev. Plant Biol. 65, 553–578 (2014).

    CAS  Article  Google Scholar 

  29. 29

    Barazesh, S. & McSteen, P. Hormonal control of grass inflorescence development. Trends Plant Sci. 13, 656–662 (2008).

    CAS  Article  Google Scholar 

  30. 30

    Gallavotti, A. The role of auxin in shaping shoot architecture. J. Exp. Bot. 64, 2593–2608 (2013).

    CAS  Article  Google Scholar 

  31. 31

    Yamamoto, Y., Kamiya, N., Morinaka, Y., Matsuoka, M. & Sazuka, T. Auxin biosynthesis by the YUCCA genes in rice. Plant Physiol. 143, 1362–1371 (2007).

    CAS  Article  Google Scholar 

  32. 32

    Nelissen, H. et al. Dynamic changes in ANGUSTIFOLIA3 complex composition reveal a growth regulatory mechanism in the maize leaf. Plant Cell 27, 1605–1619 (2015).

    CAS  Article  Google Scholar 

  33. 33

    Kim, J. H. & Tsukaya, H. Regulation of plant growth and development by the GROWTH-REGULATING FACTOR and GRF-INTERACTING FACTOR duo. J. Exp. Bot. 66, 6093–6107 (2015).

    CAS  Article  Google Scholar 

  34. 34

    Karimi, M., Inzé, D. & Depicker, A. GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 7, 193–195 (2002).

    CAS  Article  Google Scholar 

  35. 35

    Franco-Zorrilla, J. M. et al. Target mimicry provides a new mechanism for regulation of microRNA activity. Nature Genet. 39, 1033–1037 (2007).

    CAS  Article  Google Scholar 

  36. 36

    Hiei, Y., Ohta, S., Komari, T. & Kumashiro, T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6, 271–282 (1994).

    CAS  Article  Google Scholar 

  37. 37

    Javelle, M. & Timmermans, M. C. P. In situ localization of small RNAs in plants by using LNA probes. Nature Protoc. 7, 533–541 (2012).

    CAS  Article  Google Scholar 

  38. 38

    Ouyang, S. et al. The TIGR Rice Genome Annotation Resource: improvements and new features. Nucleic Acids Res. 35, D883–D887 (2007).

    CAS  Article  Google Scholar 

  39. 39

    Saleh, A., Alvarez-Venegas, R. & Avramova, Z. An efficient chromatin immunoprecipitation (ChIP) protocol for studying histone modifications in Arabidopsis plants. Nature Protoc. 3, 1018–1025 (2008).

    CAS  Article  Google Scholar 

  40. 40

    Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  Google Scholar 

  41. 41

    Zhang, Y. et al. Model-based Analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  Google Scholar 

  42. 42

    Bailey, T. L. DREME: motif discovery in transcription factor ChIP-seq data. Bioinformatics 27, 1653–1659 (2011).

    CAS  Article  Google Scholar 

  43. 43

    Wang, K. et al. Using FAM labeled DNA oligos to do RNA electrophoretic mobility shift assay. Mol. Biol. Rep. 37, 2871–2875 (2010).

    CAS  Article  Google Scholar 

  44. 44

    Hellman, L. M. & Fried, M. G. Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nature Protoc. 2, 1849–1861 (2007).

    CAS  Article  Google Scholar 

  45. 45

    Chen, W. et al. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: application in the study of rice metabolomics. Mol. Plant 6, 1769–1780 (2013).

    CAS  Article  Google Scholar 

Download references


This research was partly supported by the National Transgenic Research and Development Program (2011ZX08001-004), the 863 Program (2012AA10A303) and the National Science Foundation (31370363) of China. We would like to thank Xuefeng Chen, Yan Zhou, Bo Zhong and Jing Yao (College of Life Science, Wuhan University) for their critical reading and advice during the preparation of this report. We also thank Yu Zhou and Pinji Lei (College of Life Science, Wuhan University) for providing assistance in the bioinformatic analysis.

Author information




F.G. performed in situ hybridization, SEM, EMSA and phenotypic observation. K.W. conducted microArray, CHIP-seq and RNA-seq analysis. Y.L. performed promoter analysis. Y.C. performed overexpression genesis. P.C. performed qPCR and developed the GRF transgene. Z.S. conducted the construction of the MIM396 vector. J.L. performed hormone analysis. D.J. performed gel blotting of miRNA in the hybrids. F.F. and Y.Z. designed and performed the field experiments. S.L. designed the experiments and wrote the paper.

Corresponding author

Correspondence to Shaoqing Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gao, F., Wang, K., Liu, Y. et al. Blocking miR396 increases rice yield by shaping inflorescence architecture. Nature Plants 2, 15196 (2016).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing