Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Molecular and genetic control of plant thermomorphogenesis

Abstract

Temperature is a major factor governing the distribution and seasonal behaviour of plants. Being sessile, plants are highly responsive to small differences in temperature and adjust their growth and development accordingly. The suite of morphological and architectural changes induced by high ambient temperatures, below the heat-stress range, is collectively called thermomorphogenesis. Understanding the molecular genetic circuitries underlying thermomorphogenesis is particularly relevant in the context of climate change, as this knowledge will be key to rational breeding for thermo-tolerant crop varieties. Until recently, the fundamental mechanisms of temperature perception and signalling remained unknown. Our understanding of temperature signalling is now progressing, mainly by exploiting the model plant Arabidopsis thaliana. The transcription factor PHYTOCHROME INTERACTING FACTOR 4 (PIF4) has emerged as a critical player in regulating phytohormone levels and their activity. To control thermomorphogenesis, multiple regulatory circuits are in place to modulate PIF4 levels, activity and downstream mechanisms. Thermomorphogenesis is integrally governed by various light signalling pathways, the circadian clock, epigenetic mechanisms and chromatin-level regulation. In this Review, we summarize recent progress in the field and discuss how the emerging knowledge in Arabidopsis may be transferred to relevant crop systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Typical thermomorphogenesis phenotypes of Arabidopsis thaliana plants.
Figure 2: Simplified model of the central role of PIF4 in the molecular genetic circuitries underlying thermomorphogenesis.
Figure 3: Thermomorphogenesis in crop species.

References

  1. 1

    American Meteorological Society. State of the climate in 2014. Bull. Am. Meteorol. Soc. 96 (special suppl.) (2015).

  2. 2

    IPCC. Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

    Google Scholar 

  3. 3

    Fitter, A. H. & Fitter, R. S. R. Rapid changes in flowering time in British plants. Science 296, 1689–1691 (2002).

    CAS  PubMed  Article  Google Scholar 

  4. 4

    Thuiller, W., Lavorel, S., Araújo, M. B., Sykes, M. T. & Prentice, I. C. Climate change threats to plant diversity in Europe. Proc. Natl Acad. Sci. USA 102, 8245–8250 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5

    Willis, C. G., Ruhfel, B., Primack, R. B., Miller-Rushing, A. J. & Davis, C. C. Phylogenetic patterns of species loss in Thoreau's woods are driven by climate change. Proc. Natl Acad. Sci. USA 105, 17029–17033 (2008).

    CAS  PubMed  Article  Google Scholar 

  6. 6

    Nicotra, A. B. et al. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 15, 684–692 (2010).

    CAS  PubMed  Article  Google Scholar 

  7. 7

    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  8. 8

    Peñuelas, J. et al. Evidence of current impact of climate change on life: a walk from genes to the biosphere. Glob. Change Biol. 19, 2303–2338 (2013).

    Article  Google Scholar 

  9. 9

    Bita, C. & Gerats, T. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress tolerant crops. Front. Plant Sci. 4, 273 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  10. 10

    Ovaskainen, O. et al. Community-level phenological response to climate change. Proc. Natl Acad. Sci. USA 110 13434–13439 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11

    CaraDonna, P. J., Iler, A. M. & Inouye, D. W. Shifts in flowering phenology reshape a subalpine plant community. Proc. Natl Acad. Sci. USA 1, 11, 4916–4921 (2014).

    Article  CAS  Google Scholar 

  12. 12

    Pauli, H. et al. Recent plant diversity changes on Europe's mountain summits. Science 336, 353–355 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13

    Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. Nature Clim. Change 4, 287–291 (2014).

    Article  Google Scholar 

  14. 14

    Battisti, D. S. & Naylor, R. L. Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323, 240–244 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15

    Lobell, D. B. & Gourdji, S. M. The influence of climate change on global crop productivity. Plant Physiol. 160, 1686–1697 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16

    Erwin, J. E., Heins, R. D. & Karlsson, M. G. Thermomorphogenesis in Lilium longiflorum. Am. J. Bot. 76, 47–52 (1989).

    Article  Google Scholar 

  17. 17

    Crawford, A. J., McLachlan, D. H., Hetherington, A. M. & Franklin, K. A. High temperature exposure increases plant cooling capacity. Curr. Biol. 22, R396–R397 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18

    Bridge, L. J., Franklin, K. A. & Homer, M. E. Impact of plant shoot architecture on leaf cooling: a coupled heat and mass transfer model. J. R. Soc. Interface http://dx.doi.org/10.1098/rsif.2013.0326 (2013).

  19. 19

    Van Zanten, M., Pons, T. L., Janssen, J. A. M., Voesenek, L. A. C. J. & Peeters, A. J. M. On the relevance and control of leaf angle. Crit. Rev. Plant Sci. 29, 300–316 (2010).

    Article  Google Scholar 

  20. 20

    Van Zanten, M., Bours, R., Pons, T. L. & Proveniers, M. C. G. in Temperature and Plant Development (eds Franklin, K. A. & Wigge, P. A. ) 49–78 (Wiley, 2014).

    Google Scholar 

  21. 21

    Kotak, S. et al. Complexity of the heat stress response in plants. Curr. Opin. Plant Biol. 10, 310–316 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22

    Koini, M. A. et al. High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Curr. Biol. 19, 408–413 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23

    Nomoto, Y. et al. A circadian clock- and PIF4-mediated double coincidence mechanism is implicated in the thermosensitive photoperiodic control of plant architectures in Arabidopsis thaliana. Plant Cell Physiol. 53, 1965–1973 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24

    Yamashino, T. et al. Verification at the protein level of the PIF4-mediated external coincidence model for the temperature-adaptive photoperiodic control of plant growth in Arabidopsis thaliana. Plant Signal. Behav. 8, e23390 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  25. 25

    Mizuno, T. et al. Ambient temperature signal feeds into the circadian clock transcriptional circuitry through the EC night-time repressor in Arabidopsis thaliana. Plant Cell Physiol. 55, 958–976 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26

    Box, M. S. et al. ELF3 controls thermoresponsive growth in Arabidopsis. Curr. Biol. 25, 194–199 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27

    Seaton, D. D. et al. Linked circadian outputs control elongation growth and flowering in response to photoperiod and temperature. Mol. Syst. Biol. 11, 776 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  28. 28

    Raschke, A. et al. Natural variants of ELF3 affect thermomorphogenesis by transcriptionally modulating PIF4-dependent auxin response genes. BMC Plant Biol. 15, 197 (2015).

  29. 29

    Franklin, K. A. et al. PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc. Natl Acad. Sci. USA 108, 20231–20235 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30

    Sun, J., Qi, L., Li, Y., Chu, J. & Li, C. PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating Arabidopsis hypocotyl growth. PLoS Genet. 8, e1002594 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31

    Gray, W. M., Östin, A., Sandberg, G., Romano, C. P. & Estelle, M. High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proc. Natl Acad. Sci. USA 95 7197–7202 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32

    Stavang, J. A. et al. Hormonal regulation of temperature-induced growth in Arabidopsis. Plant J. 60, 589–601 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33

    Oh, E., Zhu, J.-Y. & Wang, Z.-Y. Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nature Cell Biol. 14, 802–809 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34

    Oh, E. et al. Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl. eLife 3, e03031 (2014).

    PubMed Central  Article  CAS  Google Scholar 

  35. 35

    Kumar, S. V. & Wigge, P. A. H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell 140, 136–147 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36

    Lee, H.-J. et al. FCA mediates thermal adaptation of stem growth by attenuating auxin action in Arabidopsis. Nature Commun. 5, 5473 (2014).

    Article  Google Scholar 

  37. 37

    Yamori, W., Hikosaka, K. & Way, D. Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynth. Res. 119, 101–117 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38

    Capovilla, G., Schmid, M. & Posé, D. Control of flowering by ambient temperature. J. Exp. Bot. 66, 59–69 (2014).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  39. 39

    Verhage, L., Angenent, G. C. & Immink, R. G. H. Research on floral timing by ambient temperature comes into blossom. Trends Plant Sci. 19, 583–591 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40

    Orbovic, V. & Poff, K. L. Growth distribution during phototropism of Arabidopsis thaliana seedlings. Plant Physiol. 103, 157–163 (1993).

    PubMed  PubMed Central  Article  Google Scholar 

  41. 41

    Delker, C. et al. The DET1–COP1–HY5 pathway constitutes a multipurpose signaling module regulating plant photomorphogenesis and thermomorphogenesis. Cell Rep. 9, 1983–1989 (2014).

    CAS  PubMed  Article  Google Scholar 

  42. 42

    Delker, C. et al. Natural variation of transcriptional auxin response networks in Arabidopsis thaliana. Plant Cell 22, 2184–2200 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43

    Johansson, H. et al. Arabidopsis cell expansion is controlled by a photothermal switch. Nature Commun. 5, 4848 (2014).

  44. 44

    Bai, M.-Y., Fan, M., Oh, E. & Wang, Z.-Y. A triple helix-loop-helix/basic helix-loop-helix cascade controls cell elongation downstream of multiple hormonal and environmental signaling pathways in Arabidopsis. Plant Cell 24, 4917–4929 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  45. 45

    Ibañez, C. et al. Developmental plasticity of Arabidopsis thaliana accessions across an ambient temperature range. bioRxiv http://dx.doi.org/10.1101/017285 (2015).

    Google Scholar 

  46. 46

    Miyazaki, Y. ZEITLUPE positively regulates hypocotyl elongation at warm temperature under light in Arabidopsis thaliana. Plant Signal. Behav. 10, e998540 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  47. 47

    Maharjan, P. & Choe, S. High temperature stimulates DWARF4 (DWF4) expression to increase hypocotyl elongation in Arabidopsis. J. Plant Biol. 54, 425–429 (2011).

    CAS  Article  Google Scholar 

  48. 48

    Hao, Y., Oh, E., Choi, G., Liang, Z. & Wang, Z.-Y. Interactions between HLH and bHLH factors modulate light-regulated plant development. Mol. Plant 5, 688–697 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  49. 49

    Zhu, W. et al. Natural variation identifies ICARUS1, a universal gene required for cell proliferation and growth at high temperatures in Arabidopsis thaliana. PLoS Genet. 11, e1005085 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  50. 50

    Sanchez-Bermejo, E. et al. Genetic architecture of natural variation in thermal responses of Arabidopsis. Plant Physiol. 169, 647–659 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51

    Millenaar, F. F. et al. Ethylene-induced differential growth of petioles in Arabidopsis. analyzing natural variation, response kinetics, and regulation. Plant Physiol. 137, 998–1008 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52

    van Zanten, M., Voesenek, L. A. C. J., Peeters, A. J. M. & Millenaar, F. F. Hormone- and light-mediated regulation of heat-induced differential petiole growth in Arabidopsis. Plant Physiol. 151, 1446–1458 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53

    Vile, D. et al. Arabidopsis growth under prolonged high temperature and water deficit: independent or interactive effects?. Plant Cell Environ. 35, 702–718 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  54. 54

    Vasseur, F., Pantin, F. & Vile, D. Changes in light intensity reveal a major role for carbon balance in Arabidopsis responses to high temperature. Plant Cell Environ. 34, 1563–1576 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55

    Franklin, K. A. Shade avoidance. New Phytol. 179, 930–944 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56

    Proveniers, M. C. G. & van Zanten, M. High temperature acclimation through PIF4 signaling. Trends Plant Sci. 18, 59–64 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. 57

    de Wit, M., Lorrain, S. & Fankhauser, C. Auxin-mediated plant architectural changes in response to shade and high temperature. Physiol. Plant. 151, 13–24 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. 58

    Foreman, J. et al. Light receptor action is critical for maintaining plant biomass at warm ambient temperatures. Plant J. 65, 441–452 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. 59

    Nozue, K. et al. Rhythmic growth explained by coincidence between internal and external cues. Nature 448, 358–361 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. 60

    Niwa, Y., Yamashino, T. & Mizuno, T. The circadian clock regulates the photoperiodic response of hypocotyl elongation through a coincidence mechanism in Arabidopsis thaliana. Plant Cell Physiol. 50, 838–854 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. 61

    Kunihiro, A. et al. PHYTOCHROME-INTERACTING FACTOR 4 and 5 (PIF4 and PIF5) activate the homeobox ATHB2 and auxin-inducible IAA29 genes in the coincidence mechanism underlying photoperiodic control of plant growth of Arabidopsis thaliana. Plant Cell Physiol. 52, 1315–1329 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  62. 62

    Nusinow, D. A. et al. The ELF4–ELF3–LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature 475, 398–402 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63

    Gould, P. D. et al. The molecular basis of temperature compensation in the Arabidopsis circadian clock. Plant Cell 18, 1177–1187 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64

    Covington, M. F. et al. ELF3 modulates resetting of the circadian clock in Arabidopsis. Plant Cell 13, 1305–1316 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65

    Liu, X. L., Covington, M. F., Fankhauser, C., Chory, J. & Wagner, D. R. ELF3 encodes a circadian clock–regulated nuclear protein that functions in an Arabidopsis PHYB signal transduction pathway. Plant Cell 13, 1293–1304 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66

    Nieto, C., López-Salmerón, V., Davière, J.-M. & Prat, S. ELF3–PIF4 interaction regulates plant growth independently of the evening complex. Curr. Biol. 25, 187–193 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  67. 67

    Koornneef, M., Rolff, E. & Spruit, C. J. P. Genetic control of light-inhibited hypocotyl elongation in Arabidopsis thaliana (L.) Heynh. Z. Pflanzenphysiol. 100, 147–160 (1980).

    Article  Google Scholar 

  68. 68

    Oyama, T., Shimura, Y. & Okada, K. The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes Dev. 11, 2983–2995 (1997).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. 69

    Toledo-Ortiz, G. et al. The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription. PLoS Genet. 10, e1004416 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  70. 70

    Lee, J. et al. Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. Plant Cell 19, 731–749 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. 71

    Lorrain, S., Allen, T., Duek, P. D., Whitelam, G. C. & Fankhauser, C. Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. Plant J. 53, 312–323 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  72. 72

    Bernardo-García, S. et al. BR-dependent phosphorylation modulates PIF4 transcriptional activity and shapes diurnal hypocotyl growth. Genes Dev. 28, 1681–1694 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  73. 73

    Dong, J. et al. Arabidopsis DE-ETIOLATED1 represses photomorphogenesis by positively regulating phytochrome-interacting factors in the dark. Plant Cell 26, 3630–3645 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. 74

    Shi, H. et al. Arabidopsis DET1 degrades HFR1 but stabilizes PIF1 to precisely regulate seed germination. Proc. Natl Acad. Sci. USA 112, 3817–3822 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    de Lucas, M. et al. A molecular framework for light and gibberellin control of cell elongation. Nature 451, 480–484 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. 76

    Hornitschek, P. et al. Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling. Plant J. 71, 699–711 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  77. 77

    Quint, M. & Gray, W. M. Auxin signaling. Curr. Opin. Plant Biol. 9, 448–453 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. 78

    Delker, C., Raschke, A. & Quint, M. Auxin dynamics: the dazzling complexity of a small molecule's message. Planta 227, 929–941 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  79. 79

    Chae, K. et al. Arabidopsis SMALL AUXIN UP RNA63 promotes hypocotyl and stamen filament elongation. Plant J. 71, 684–697 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  80. 80

    Spartz, A. K. et al. The SAUR19 subfamily of SMALL AUXIN UP RNA genes promote cell expansion. Plant J. 70, 978–990 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. 81

    Spartz, A. K. et al. SAUR inhibition of PP2C-D phosphatases activates plasma membrane H+-ATPases to promote cell expansion in Arabidopsis. Plant Cell 26, 2129–2142 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. 82

    Xu, J., Tian, J., Belanger, F. C. & Huang, B. Identification and characterization of an expansin gene AsEXP1 associated with heat tolerance in C3 Agrostis grass species. J. Exp. Bot. 58, 3789–3796 (2007).

    CAS  PubMed  Article  Google Scholar 

  83. 83

    Bai, M.-Y. et al. Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nature Cell Biol. 14, 810–817 (2012).

    CAS  PubMed  Article  Google Scholar 

  84. 84

    Wang, W., Bai, M.-Y. & Wang, Z.-Y. The brassinosteroid signaling network — a paradigm of signal integration. Curr. Opin. Plant Biol. 21, 147–153 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. 85

    Feng, S. et al. Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature 451, 475–479 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. 86

    Hersch, M. et al. Light intensity modulates the regulatory network of the shade avoidance response in Arabidopsis. Proc. Natl Acad. Sci. USA 111, 6515–6520 (2014).

    CAS  PubMed  Article  Google Scholar 

  87. 87

    Rausenberger, J. et al. An integrative model for phytochrome B mediated photomorphogenesis: from protein dynamics to physiology. PLoS One 5, e10721 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  88. 88

    Chew, Y. H. et al. Mathematical models light up plant signaling. Plant Cell 26, 5–20 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. 89

    Arrhenius, S. Quantitative Laws in Biological Chemistry (Bell, 1915).

    Google Scholar 

  90. 90

    Sidaway-Lee, K., Costa, M., Rand, D., Finkenstadt, B. & Penfield, S. Direct measurement of transcription rates reveals multiple mechanisms for configuration of the Arabidopsis ambient temperature response. Genome Biol. 15, R45 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  91. 91

    Deal, R. B., Topp, C. N., McKinney, E. C. & Meagher, R. B. Repression of flowering in Arabidopsis requires activation of FLOWERING LOCUS C expression by the histone variant H2A. Z. Plant Cell 19, 74–83 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. 92

    Stewart, J. L., Maloof, J. N. & Nemhauser, J. L. PIF genes mediate the effect of sucrose on seedling growth dynamics. PLoS One 6, e19894 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. 93

    Liu, Z. et al. Phytochrome interacting factors (PIFs) are essential regulators for sucrose-induced hypocotyl elongation in Arabidopsis. J. Plant Physiol. 168, 1771–1779 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  94. 94

    Sairanen, I. et al. Soluble carbohydrates regulate auxin biosynthesis via PIF proteins in Arabidopsis. Plant Cell 24, 4907–4916 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. 95

    Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  96. 96

    Parent, B. & Tardieu, F. Temperature responses of developmental processes have not been affected by breeding in different ecological areas for 17 crop species. New Phytol. 194, 760–774 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  97. 97

    Shen, H. et al. Overexpression of receptor-like kinase ERECTA improves thermotolerance in rice and tomato. Nature Biotechnol. 33, 996–1003 (2015).

    CAS  Article  Google Scholar 

  98. 98

    Nakamichi, N. Adaptation to the local environment by modifications of the photoperiod response in crops. Plant Cell Physiol. 56, 594–604 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  99. 99

    Boden, S., Kavanova, M., Finnegan, E. & Wigge, P. Thermal stress effects on grain yield in Brachypodium distachyon occur via H2A.Z-nucleosomes. Genome Biol. 14, R65 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  100. 100

    Hanzawa, T. et al. Cellular auxin homeostasis under high temperature is regulated through a SORTING NEXIN1-dependent endosomal trafficking pathway. Plant Cell 25, 3424–3433 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

We thank J. Bellstädt for graphical support and J. Trenner for the photographs in Fig. 3 (Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany). This work was supported by a grant from the Deutsche Forschungsgemeinschaft to M.Q. (Qu 141/3-1) and NWO VENI grant 863.11.008 to M.v.Z.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Marcel Quint or Martijn van Zanten.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Quint, M., Delker, C., Franklin, K. et al. Molecular and genetic control of plant thermomorphogenesis. Nature Plants 2, 15190 (2016). https://doi.org/10.1038/nplants.2015.190

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing