Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Auxin production couples endosperm development to fertilization


In flowering plants, seed development is preceded by a double fertilization event, whereby two male sperm cells fuse with two female gametes: the egg and central cells. The fertilized egg cell will form the embryo, and the fertilized central cell will give rise to the triploid endosperm, whose function is to nourish and support the embryo. Even though the endosperm has an unparalleled role for human nutrition, the molecular bases for its development are yet to be understood. Our results reveal that increasing auxin levels after fertilization drive the replication of the central cell in Arabidopsis thaliana. Auxin is sufficient to trigger central cell division and is necessary for correct endosperm development, a process dependent on the MADS-box transcription factor AGL62 (AGAMOUS-LIKE 62). We propose that the epigenetic regulators of the Polycomb group (PcG) family block central cell division before fertilization by repressing the expression of auxin biosynthesis genes in the female gametophyte.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Auxin is produced post-fertilization in the endosperm of Arabidopsis.
Figure 2: Auxin-related mutants show endosperm defects.
Figure 3: Auxin induces autonomous endosperm development.
Figure 4: fis-class mutant ovules produce auxin ectopically.
Figure 5: AGL62 is required for autonomous endosperm development.


  1. Weijers, D., Van Hamburg, J. P., Van Rijn, E., Hooykaas, P. J. & Offringa, R. Diphtheria toxin-mediated cell ablation reveals interregional communication during Arabidopsis seed development. Plant Physiol. 133, 1882–1892 (2003).

    Article  CAS  Google Scholar 

  2. Hehenberger, E., Kradolfer, D. & Köhler, C. Endosperm cellularization defines an important developmental transition for embryo development. Development 139, 2031–2039 (2012).

    Article  CAS  Google Scholar 

  3. Sabelli, P. A. & Larkins, B. A. The development of endosperm in grasses. Plant Physiol. 149, 14–26 (2009).

    Article  CAS  Google Scholar 

  4. Hennig, L. & Derkacheva, M. Diversity of Polycomb group complexes in plants: same rules, different players? Trends Genet. 25, 414–423 (2009).

    Article  CAS  Google Scholar 

  5. Derkacheva, M. & Hennig, L. Variations on a theme: Polycomb group proteins in plants. J. Exp. Bot. 65, 2769–2784 (2014).

    Article  CAS  Google Scholar 

  6. Chaudhury, A. M. et al. Fertilization-independent seed development in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 94, 4223–4228 (1997).

    Article  CAS  Google Scholar 

  7. Ohad, N. et al. A mutation that allows endosperm development without fertilization. Proc. Natl Acad. Sci. USA 93, 5319–5324 (1996).

    Article  CAS  Google Scholar 

  8. Guitton, A. E. et al. Identification of new members of Fertilisation Independent Seed Polycomb Group pathway involved in the control of seed development in Arabidopsis thaliana. Development 131, 2971–2981 (2004).

    Article  CAS  Google Scholar 

  9. Köhler, C. et al. Arabidopsis MSI1 is a component of the MEA/FIE Polycomb group complex and required for seed development. EMBO J. 22, 4804–4814 (2003).

    Article  Google Scholar 

  10. Roszak, P. & Köhler, C. Polycomb group proteins are required to couple seed coat initiation to fertilization. Proc. Natl Acad. Sci. USA 108, 20826–20831 (2011).

    Article  CAS  Google Scholar 

  11. Hsieh, T. F. et al. Regulation of imprinted gene expression in Arabidopsis endosperm. Proc. Natl Acad. Sci. USA 108, 1755–1762 (2011).

    Article  CAS  Google Scholar 

  12. Wolff, P. et al. High-resolution analysis of parent-of-origin allelic expression in the Arabidopsis Endosperm. PLoS Genet. 7, e1002126 (2011).

    Article  CAS  Google Scholar 

  13. Cheng, Y., Dai, X. & Zhao, Y. Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell 19, 2430–2439 (2007).

    Article  CAS  Google Scholar 

  14. Stepanova, A. N. et al. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133, 177–191 (2008).

    Article  CAS  Google Scholar 

  15. Perrot-Rechenmann, C. Cellular responses to auxin: division versus expansion. Cold Spring Harb. Perspect. Biol. 2, a001446 (2010).

    Article  Google Scholar 

  16. Robert, H. S. et al. Local auxin sources orient the apical-basal axis in Arabidopsis embryos. Curr. Biol. 23, 2506–2512 (2013).

    Article  CAS  Google Scholar 

  17. Liao, C. Y. et al. Reporters for sensitive and quantitative measurement of auxin response. Nature Methods 12, 207–210 (2015).

    Article  CAS  Google Scholar 

  18. Erilova, A. et al. Imprinting of the Polycomb Group gene MEDEA serves as a ploidy sensor in Arabidopsis. PLoS Genet. 5, (2009).

  19. Weinhofer, I., Hehenberger, E., Roszak, P., Hennig, L. & Köhler, C. H3K27me3 profiling of the endosperm implies exclusion of polycomb group protein targeting by DNA methylation. PLoS Genet. 6, (2010).

  20. Luo, M., Bilodeau, P., Dennis, E. S., Peacock, W. J. & Chaudhury, A. Expression and parent-of-origin effects for FIS2, MEA, and FIE in the endosperm and embryo of developing Arabidopsis seeds. Proc. Natl Acad. Sci. USA 97, 10637–10642 (2000).

    Article  CAS  Google Scholar 

  21. Dreher, K. A., Brown, J., Saw, R. E. & Callis, J. The Arabidopsis Aux/IAA protein family has diversified in degradation and auxin responsiveness. Plant Cell 18, 699–714 (2006).

    Article  CAS  Google Scholar 

  22. Sato, A. & Yamamoto, K. T. Overexpression of the non-canonical Aux/IAA genes causes auxin-related aberrant phenotypes in Arabidopsis. Physiol. Plant. 133, 397–405 (2008).

    Article  CAS  Google Scholar 

  23. Hamann, T., Benkova, E., Baurle, I., Kientz, M. & Jurgens, G. The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes Dev. 16, 1610–1615 (2002).

    Article  CAS  Google Scholar 

  24. Ishida, T. et al. Auxin modulates the transition from the mitotic cycle to the endocycle in Arabidopsis. Development 137, 63–71 (2010).

    Article  CAS  Google Scholar 

  25. Steffen, J. G., Kang, I. H., Macfarlane, J. & Drews, G. N. Identification of genes expressed in the Arabidopsis female gametophyte. Plant J. 51, 281–292 (2007).

    Article  CAS  Google Scholar 

  26. Kang, I. H., Steffen, J. G., Portereiko, M. F., Lloyd, A. & Drews, G. N. The AGL62 MADS domain protein regulates cellularization during endosperm development in Arabidopsis. Plant Cell 20, 635–647 (2008).

    Article  CAS  Google Scholar 

  27. Kradolfer, D., Hennig, L. & Köhler, C. Increased maternal genome dosage bypasses the requirement of the FIS polycomb repressive complex 2 in Arabidopsis seed development. PLoS Genet. 9, e1003163 (2013).

    Article  CAS  Google Scholar 

  28. Wuest, S. E. et al. Arabidopsis female gametophyte gene expression maps reveals similarities between plant and animal gametes. Curr. Biol. 20, 506–512 (2010).

    Article  CAS  Google Scholar 

  29. Bemer, M., Heijmans, K., Airoldi, C., Davies, B. & Angenent, G. C. An atlas if Type I MADS box gene expression during female gametophyte and seed development in Arabidopsis. Plant Phys. 154, 287–300 (2010).

    Article  CAS  Google Scholar 

  30. Takatsuka, H. & Umeda, M. Hormonal control of cell division and elongation along differentiation trajectories in roots. J. Exp. Bot. 65, 2633–2643 (2014).

    Article  CAS  Google Scholar 

  31. Bernardi, J. et al. Impaired auxin biosynthesis in the defective endosperm18 mutant is due to mutational loss of expression in the ZmYuc1 gene encoding endosperm-specific YUCCA1 protein in maize. Plant Physiol. 160, 1318–1328 (2012).

    Article  CAS  Google Scholar 

  32. Forestan, C., Meda, S. & Varotto, S. ZmPIN1-mediated auxin transport is related to cellular differentiation during maize embryogenesis and endosperm development. Plant Physiol. 152, 1373–1390 (2010).

    Article  CAS  Google Scholar 

  33. Waters, A. J. et al. Comprehensive analysis of imprinted genes in maize reveals allelic variation for imprinting and limited conservation with other species. Proc. Natl Acad. Sci. USA 110, 19639–19644 (2013).

    Article  CAS  Google Scholar 

  34. Koltunow, A. M. & Grossniklaus, U. Apomixis: a developmental perspective. Annu. Rev. Plant Biol. 54, 547–574 (2003).

    Article  CAS  Google Scholar 

  35. Dharmasiri, N. et al. AXL and AXR1 have redundant functions in RUB conjugation and growth and development in Arabidopsis. Plant J. 52, 114–123 (2007).

    Article  CAS  Google Scholar 

  36. Karimi, M., Inze, D. & Depicker, A. GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 7, 193–195 (2002).

    Article  CAS  Google Scholar 

  37. Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998).

    Article  CAS  Google Scholar 

Download references


We are indebted to D. Weijers for providing the R2D2 system and DR5v2 reporter before publication, and to H. Robert and J. Friml for providing the YUC10 reporter. This research was supported by a European Research Council Starting Independent Researcher grant (to C.K.), a grant from the Swedish Science Foundation (to C.K.) and a grant from the Knut and Alice Wallenberg Foundation (to C.K.).

Author information

Authors and Affiliations



D.D.F., R.A.B. and P.J.R. carried out the experimental procedures. D.D.F., R.A.B., P.J.R. and C.K. performed the experimental design. D.D.F. and C.K. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Claudia Köhler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Figueiredo, D., Batista, R., Roszak, P. et al. Auxin production couples endosperm development to fertilization. Nature Plants 1, 15184 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing