Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The extremophile Nicotiana benthamiana has traded viral defence for early vigour


A single lineage of Nicotiana benthamiana is widely used as a model plant1 and has been instrumental in making revolutionary discoveries about RNA interference (RNAi), viral defence and vaccine production. It is peerless in its susceptibility to viruses and its amenability in transiently expressing transgenes2,3. These unparalleled characteristics have been associated both positively and negatively with a disruptive insertion in the RNA-dependent RNA polymerase 1 gene, Rdr14–6. For a plant so routinely used in research, the origin, diversity and evolution of the species, and the basis of its unusual abilities, have been relatively unexplored. Here, by comparison with wild accessions from across the spectrum of the species’ natural distribution, we show that the laboratory strain of N. benthamiana is an extremophile originating from a population that has retained a mutation in Rdr1 for 0.8 Myr and thereby traded its defence capacity for early vigour and survival in the extreme habitat of central Australia. Reconstituting Rdr1 activity in this isolate provided protection. Silencing the functional allele in a wild strain rendered it hypersusceptible and was associated with a doubling of seed size and enhanced early growth rate. These findings open the way to a deeper understanding of the delicate balance between protection and vigour.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Characterization of N. benthamiana isolates.
Figure 2: Responses of N. benthamiana isolates to virus infection and correlation with their Rdr1 genotype.
Figure 3: Phylogeny, molecular clock and geographic distribution of N. benthamiana isolates.
Figure 4: Flower structure, germination rate and early vigour of N. benthamiana isolates.


  1. 1

    Goodin, M. M., Zaitlin, D., Naidu, R. A. & Lommel, S. A. Nicotiana benthamiana: its history and future as a model for plant-pathogen interactions. Mol. Plant Microbe Interact. 21, 1015–1026 (2008).

    CAS  Article  Google Scholar 

  2. 2

    Clemente, T. in Nicotiana (Nicotiana tobaccum, Nicotiana benthamiana) (ed Wang, K. ) Vol. 343, 143–154 (Humana, 2006).

    Google Scholar 

  3. 3

    Horsch, R. B. et al. A simple and general method of transferring genes into plants. Science 227, 1229–1231 (1985).

    CAS  Article  Google Scholar 

  4. 4

    Yang, S. J., Carter, S. A., Cole, A. B., Cheng, N. H. & Nelson, R. S. A natural variant of a host RNA-dependent RNA polymerase is associated with increased susceptibility to viruses by Nicotiana benthamiana. Proc. Natl Acad. Sci. USA 101, 6297–6302 (2004).

    CAS  Article  Google Scholar 

  5. 5

    Ying, X. B. et al. RNA-dependent RNA polymerase 1 from Nicotiana tabacum suppresses RNA silencing and enhances viral infection in Nicotiana benthamiana. Plant Cell 22, 1358–1372 (2010).

    CAS  Article  Google Scholar 

  6. 6

    Akhtar, S., Briddon, R. & Mansoor, S. Reactions of Nicotiana species to inoculation with monopartite and bipartite begomoviruses. Virol. J. 8, 475 (2011).

    CAS  Article  Google Scholar 

  7. 7

    Burbidge, N. T. The Australian species of Nicotiana L. (Solanaceae). Aust. J. Bot. 8, 342–378 (1960).

    Article  Google Scholar 

  8. 8

    King, A. M. Q., Adams, M. J., Carstens, E. B. & Lefkowitz, E. J. (eds). Virus Taxonomy – Ninth Report of the International Committee on Taxonomy of Viruses. (Elsevier/Academic Press, 2011).

    Google Scholar 

  9. 9

    Garcia-Ruiz, H. et al. Arabidopsis RNA-dependent RNA polymerases and dicer-like proteins in antiviral defense and small interfering RNA biogenesis during Turnip Mosaic Virus infection. Plant cell 22, 481–496 (2010).

    CAS  Article  Google Scholar 

  10. 10

    Nakasugi, K. et al. De novo transcriptome sequence assembly and analysis of RNA silencing genes of Nicotiana benthamiana. PLoS ONE 8, e59534 (2013).

    CAS  Article  Google Scholar 

  11. 11

    Nakasugi, K., Crowhurst, R., Bally, J. & Waterhouse, P. Combining transcriptome assemblies from multiple de novo assemblers in the allo-tetraploid plant Nicotiana benthamiana. PLoS ONE 9, e91776 (2014).

    Article  Google Scholar 

  12. 12

    Naim, F. et al. Advanced engineering of lipid metabolism in Nicotiana benthamiana using a draft genome and the V2 viral silencing-suppressor protein. PLoS ONE 7, e52717 (2012).

    CAS  Article  Google Scholar 

  13. 13

    Duarte, J. M. et al. Identification of shared single copy nuclear genes in Arabidopsis, Populus, Vitis and Oryza and their phylogenetic utility across various taxonomic levels. BMC Evol. Biol. 10, 61 (2010).

    Article  Google Scholar 

  14. 14

    Ladiges, P. Y., Marks, C. E. & Nelson, G. Biogeography of Nicotiana Section Suaveolentes (Solanaceae) reveals geographic tracks in arid Australia. J. Biogeog. 38, 2066–2077 (2011).

    Article  Google Scholar 

  15. 15

    Byrne, M. et al. Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Mol. Ecol. 17, 4398–4417 (2008).

    CAS  Article  Google Scholar 

  16. 16

    Mauricio, R. Costs of resistance to natural enemies in field populations of the annual plant Arabidopsis thaliana. Am. Nat. 151, 20–28 (1998).

    CAS  PubMed  Google Scholar 

  17. 17

    Todesco, M. et al. Natural allelic variation underlying a major fitness trade-off in Arabidopsis thaliana. Nature 465, 632–636 (2010).

    CAS  Article  Google Scholar 

  18. 18

    Zavala, J. A., Patankar, A. G., Gase, K. & Baldwin, I. T. Constitutive and inducible trypsin proteinase inhibitor production incurs large fitness costs in Nicotiana attenuata. Proc. Natl Acad. Sci. USA 101, 1607–1612 (2004).

    CAS  Article  Google Scholar 

  19. 19

    Ruiz, M. T., Voinnet, O. & Baulcombe, D. C. Initiation and maintenance of virus-induced gene silencing. Plant Cell 10, 937–946 (1998).

    CAS  Article  Google Scholar 

  20. 20

    Marks, C. E., Newbigin, E. & Ladiges, P. Y. Comparative morphology and phylogeny of Nicotiana section Suaveolentes (Solanaceae) in Australia and the South Pacific. Aust. Syst. Bot. 24, 61–86 (2011).

    Article  Google Scholar 

  21. 21

    Fusaro, A. F. et al. The Enamovirus P0 protein is a silencing suppressor which inhibits local and systemic RNA silencing through AGO1 degradation. Virology 426, 178–187 (2012).

    CAS  Article  Google Scholar 

  22. 22

    Eamens, A. L. & Waterhouse, P. M. Vectors and methods for hairpin RNA and artificial microRNA-mediated gene silencing in plants. Methods Mol. Biol. 701, 179–197 (2011).

    CAS  Article  Google Scholar 

  23. 23

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS  Article  Google Scholar 

  24. 24

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nature Methods 9, 357–359 (2012).

    CAS  Article  Google Scholar 

  25. 25

    Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 12, 323 (2011).

    CAS  Article  Google Scholar 

  26. 26

    Thorvaldsdóttir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform. 14, 178–192 (2013).

    Article  Google Scholar 

  27. 27

    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    CAS  Article  Google Scholar 

  28. 28

    Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).

    CAS  Article  Google Scholar 

  29. 29

    Ronquist, F. & Huelsenbeck, J. P. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).

    CAS  Article  Google Scholar 

  30. 30

    Drummond, A. J., Ho, S. Y. W., Phillips, M. J. & Rambaut, A. “Relaxed phylogenetics and dating with confidence”. PLoS Biol. 4, e88 (2006).

    Article  Google Scholar 

Download references


We are grateful to D. Albrecht, T. Willing, K. Courtney, T. Bean, J. Randles, E. Newbiggin, P. Ladiges and E. Dodds for their help, resource provision and discussions, and K. Lee for excellent technical assistance.

Author information




J.B. and P.W. designed the experiments; J.B., F.J., M.W., C.P. and F.N. performed the experiments; J.B., K.N., H.J., P.W., S.H., R.C., C.W., R.H. and J.D. analysed data; J.B. and P.W. wrote the paper. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Peter M. Waterhouse.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bally, J., Nakasugi, K., Jia, F. et al. The extremophile Nicotiana benthamiana has traded viral defence for early vigour. Nature Plants 1, 15165 (2015).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing