Abstract
The chloroplast thylakoid membrane is the site for the initial steps of photosynthesis that convert solar energy into chemical energy, ultimately powering almost all life on earth. The heterogeneous distribution of protein complexes within the membrane gives rise to an intricate three-dimensional structure that is nonetheless extremely dynamic on a timescale of seconds to minutes. These dynamics form the basis for the regulation of photosynthesis, and therefore the adaptability of plants to different environments. High-resolution microscopy has in recent years begun to provide new insights into the structural dynamics underlying a number of regulatory processes such as membrane stacking, photosystem II repair, photoprotective energy dissipation, state transitions and alternative electron transfer. Here we provide an overview of the essentials of thylakoid membrane structure in plants, and consider how recent advances, using a range of microscopies, have substantially increased our knowledge of the thylakoid dynamic structure. We discuss both the successes and limitations of the currently available techniques and highlight newly emerging microscopic methods that promise to move the field beyond the current ‘static’ view of membrane organization based on frozen snapshots to a ‘live’ view of functional membranes imaged under native aqueous conditions at ambient temperature and responding dynamically to external stimuli.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Lipid polymorphism in chloroplast thylakoid membranes – as revealed by 31P-NMR and time-resolved merocyanine fluorescence spectroscopy
Scientific Reports Open Access 17 October 2017
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Nelson, N. & Ben-Shem, A. The complex architecture of oxygenic photosynthesis. Nat. Rev. Mol. Cell. Biol. 5, 971–982 (2004).
Kausche, G. A. & Ruska, H. Zur Frage der Chloroplastenstruktur. Naturwissenschaften 28, 303–304 (1940).
Gibbs, S. P. The fine structure of Euglena gracilis with special reference to the chloroplasts and pyrenoids. J. Ultrastruct. Res. 4, 127–148 (1960).
Menke, W. Structure and chemistry of plastids. Annu. Rev. Plant. Physiol. 13, 27–44 (1962).
Shimoni, E., Rav-Hon, O., Ohad, I., Brumfeld, V. & Reich, Z. Three-dimensional organisation of higher-plant chloroplast thylakoid membranes revealed by electron tomography. Plant Cell 17, 2580–2586 (2005).
Daum, B., Nicastro, D., Austin, J., McIntosh, J. R. & Kühlbrandt, W. Arrangement of photosystem II and ATP synthase in chloroplast membranes of spinach and pea. Plant Cell 22, 1299–1312 (2010).
Austin, J. R. II & Staehelin, L. A. Three-dimensional architecture of grana and stroma thylakoids of higher plants as determined by electron tomography. Plant Physiol. 155, 1601–1611 (2011).
Paolillo, D. J. The three dimensional arrangement of intergranal lamellae in chloroplasts. J. Cell Sci. 6, 243–255 (1970).
Nevo, R., Charuvi, D., Tsabari, O. & Reich, Z. Composition, architecture and dynamics of the photosynthetic apparatus in higher plants. Plant J. 70, 157–176 (2012).
Anderson, J. M. & Andersson, B. The architecture of photosynthetic membranes: lateral and transverse organization. Trends Biochem. Sci. 7, 288–292 (1982).
Albertsson, P.-Å. A quantitative model of the domain structure of the photosynthetic membrane. Trends Plant Sci. 6, 349–354 (2001).
Dekker, J. P. & Boekema, E. J. Supramolecular organization of thylakoid membrane proteins in green plants. Biochim. Biophys. Acta 1706, 12–39 (2005).
Olive, J. & Vallon, O. Structural organization of the thylakoid membrane: Freeze-fracture and immunocytochemical analysis. J. Electron Micr. Tech. 18, 360–374 (1991).
Staehelin, L. A. Chloroplast structure: from chlorophyll granules to supra-molecular architecture of thylakoid membranes. Photosynth. Res. 76, 185–196 (2003).
Goral, T. K. et al. Light-harvesting antenna composition controls the macromolecular organization and dynamics of thylakoid membranes in Arabidopsis. Plant J. 69, 289–301 (2012).
Boekema, E. J., van Breemen, J. F. L., van Roon, H. & Dekker, J. P. Arrangement of photosystem II supercomplexes in crystalline macrodomains within the thylakoid membrane of green plant chloroplasts. J. Mol. Biol. 301, 1123–1133 (2000).
Boekema, E. J., van Roon, H., Calkoen, F., Bassi, R. & Dekker, J. P. Multiple types of association of photosystem II and its light-harvesting antenna in partially solubilized photosystem II membranes. Biochemistry 38, 2233–2239 (1999).
Staehelin, L. A. Reversible particle movements associated with unstacking and restacking of chloroplast membranes in vitro. J. Cell Biol. 71, 136–158 (1976).
Kouřil, R., Oostergetel, G. T. & Boekema, E. J. Fine structure of granal thylakoid membrane organization using cryo electron tomography. Biochim. Biophys. Acta 1807, 368–374 (2011).
Sznee, K. et al. Jumping mode atomic force microscopy on grana membranes from spinach. J. Biol. Chem. 286, 39164–39171 (2011).
Johnson, M. P., Vasilev, C., Olsen, J. D. & Hunter, C. N. Nanodomains of cytochrome b6f and photosystem II complexes in spinach grana thylakoid membranes. Plant Cell 26, 3051–3061 (2014).
Phuthong, W. et al. The use of contact mode atomic force microscopy in aqueous medium for structural analysis of spinach photosynthetic complexes. Plant Physiol. 169, 1318–1332 (2015).
Vasilev, C. et al. Nano-mechanical mapping of the interactions between surface-bound RC-LH1-PufX core complexes and cytochrome c2 attached to an AFM probe. Photosynth. Res. 120, 169–180 (2014).
van Roon, H., van Breemen, J. F. L., de Weerd, F. L., Dekker, J. P. & Boekema, E. J. Solubilization of green plant thylakoid membranes with n-dodecyl-α,D-maltoside. Implications for the structural organization of the Photosystem II, Photosystem I, ATP synthase and cytochrome b6f complexes. Photosynth. Res. 64, 155–166 (2000).
Boekema, E. J., Jensen, P. E., Schlodder, E., van Breemen, J. F. L., van Roon, H., Scheller, H. V. & Dekker, J. P. Green plant photosystem I binds light-harvesting complex I on one side of the complex. Biochemistry 40, 1029–1036 (2001).
Kouřil, R. et al. Structural characterization of a complex of photosystem I and light-harvesting complex II of Arabidopsis thaliana. Biochemistry 44, 10935–10940 (2005).
Kouřil, R. et al. Structural characterization of a plant photosystem I and NAD(P)H dehydrogenase supercomplex. Plant J. 77, 568–576 (2014).
Bell, A. J., Frankel, L. K. & Bricker, T. M. High yield non-detergent isolation of photosystem I-light harvesting chlorophyll II membranes from spinach thylakoids: implications for the organization of the PSI antennae in higher plants. J. Biol. Chem. 290, 18429–18437 (2015).
Peng, L., Fukao, Y., Fujiwara, M., Takami, T. & Shikanaia, T. Efficient operation of NAD(P)H dehydrogenase requires supercomplex formation with photosystem I via minor LHCI in Arabidopsis. Plant Cell 21, 3623–3640 (2009).
Armbuster, U. et al. Arabidopsis CURVATURE THYLAKOID1 proteins modify thylakoid architecture by inducing membrane curvature. Plant Cell 25, 2661–2678 (2013).
Wollenberger, L., Stefansson, H., Yu, S. G. & Albertsson, P. A. Isolation and characterization of vesicles originating from the chloroplast grana margins. Biochim. Biophys. Acta 1184, 93–102 (1994).
Puthiyaveetil, S. et al. Compartmentalization of the protein repair machinery in photosynthetic membranes. Proc. Natl Acad. Sci. USA 111, 15839–15844 (2014).
Grieco, M., Suorsa, M., Jajoo, A., Tikkanen, M. & Aro, E. M. Light-harvesting II antenna trimers connect energetically the entire photosynthetic machinery - including both photosystems II and I. Biochim. Biophys. Acta 1847, 607–619 (2015).
Anderson, J. M., Horton, P., Kim, E.-H. & Chow, W. S. Towards elucidation of dynamic structural changes of plant thylakoid architecture. Phil. Trans. Roy. Soc. London 367, 3515–3524 (2012).
Izawa, S. & Good, N. E. Effects of salts and electron transport on the conformation of isolated chloroplasts. II. Electron microscopy. Plant Physiol. 41, 544–552 (1966).
Barber, J. Influence of surface charges on thylakoid structure and function. Ann. Rev. Plant Physiol. 33, 261–295 (1982).
Kim, E. H., Chow, W. S., Horton, P. & Anderson, J. M. Entropy-assisted stacking of thylakoid membranes. Biochim. Biophys. Acta 1708, 187–195 (2005).
Murakami, S. & Packer, L. The role of cations in the organization of chloroplast membranes. Arch. Biochem. Biophys. 146, 337–347 (1971).
Rubin, B. T., Chow, W. S. & Barber, J. Experimental and theoretical considerations of mechanisms controlling cation effects on thylakoid membrane stacking and chlorophyll fluorescence. Biochim. Biophys. Acta 634, 174–190 (1981).
Kaftan, D., Brumfeld, V., Nevo, R., Scherz, A. & Reich, Z. From chloroplasts to photosystems: In situ scanning force microscopy on intact thylakoid membranes. EMBO J. 21, 6146–6153 (2002).
Rumak, I. et al. 3-D modelling of chloroplast structure under (Mg2+) magnesium ion treatment. Relationship between thylakoid membrane arrangement and stacking. Biochim. Biophys. Acta 1797, 1736–1748 (2010).
Emerson, R. & Arnold, W. The photochemical reaction in photosynthesis. J. Gen. Physiology 16, 191–205 (1932).
Haldrup, A., Jensen, P. E., Lunde, C. & Scheller, H. V. Balance of power: a view of the mechanism of photosynthetic state transitions. Trends Plant Sci. 6, 301–305 (2001).
Wollman, F. A. State transitions reveal the dynamics and flexibility of the photosynthetic apparatus. EMBO J. 20, 3623–3630 (2001).
Ruban, A. V. & Johnson, M. P. Dynamics of the photosystems cross-section associated with the state transitions in higher plants. Photosynth. Res. 99, 173–183 (2009).
Horton, P. & Black, M. T. Activation of adenosine 5′-triphosphate induced quenching of chlorophyll fluorescence by reduced plastoquinone. The basis of state I–state II transitions in chloroplasts. FEBS Lett. 119, 141–144 (1980).
Allen, J. F., Bennett, J., Steinback, K. E. & Arntzen, C. J. Chloroplast protein phosphorylation couples plastoquinone redox state to distribution of excitation energy between photosystems. Nature 291, 25–29 (1981).
Bellafiore S., Barneche F., Peltier G. & Rochaix J.-D. State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature 433, 892–895 (2005).
Galka P. et al. Functional analyses of the plant photosystem I-light-harvesting complex II supercomplex reveal that light-harvesting complex II loosely bound to photosystem II is a very efficient antenna for photosystem I in state II. Plant Cell 24, 2963–2978 (2012).
Iwai, M., Pack, C., Takenaka, Y., Sako, Y. & Nakano, A. Photosystem II antenna phosphorylation-dependent protein diffusion determined by fluorescence correlation spectroscopy. Sci. Rep. 3, 2833 (2013).
Iwai, M., Yokono, M., Inada, N. & Minagawa, J. Live-cell imaging of photosystem II antenna dissociation during state transitions. Proc. Natl Acad. Sci. USA 107, 2337–2342 (2010).
Pribil, M., Pesaresi, P., Hertle, A., Barbato, R. & Leister, D. Role of plastid protein phosphatase TAP38 in LHCII dephosphorylation and thylakoid electron flow. PLoS Biol. 8, e1000288 (2010).
Shapiguzov, A. et al. The PPH1 phosphatase is specifically involved in LHCII dephosphorylation and state transitions in Arabidopsis. Proc. Natl Acad. Sci. USA. 107, 4782–4787 (2010).
Kyle, D. J., Staehelin, L. A. & Arntzen, C. J. Lateral mobility of the light-harvesting complex in chloroplast membranes controls excitation energy distribution in higher plants. Arch. Biochem. Biophys. 222, 527–541 (1983).
Vallon, O. et al. Lateral redistribution of cytochrome b6/f complexes along thylakoid membranes upon state transitions. Proc. Natl Acad. Sci. USA 88, 8262–8266 (1991).
Rozak, P. R., Seiser, R. M., Wacholtz, W. F. & Wise, R. R. Rapid, reversible alterations in spinach thylakoid appression upon changes in light intensity. Plant Cell Environ. 25, 421–429 (2002).
Chuartzman, S. G. et al. Thylakoid membrane remodeling during state transitions in Arabidopsis. Plant Cell 20, 1029–1039 (2008).
Iwai, M., Yokono, M. & Nakano, A. Visualizing structural dynamics of thylakoid membranes. Sci. Rep. 4, 3768 (2014).
Hasegawa, M., Shiina, T., Terazima, M. & Kumazaki, S. Selective excitation of photosystems in chloroplasts inside plant leaves observed by near-infrared laser-based fluorescence spectral microscopy. Plant Cell Physiol. 51, 225–238 (2010).
Kim, E., Ahn, T. K. & Kumazak, S. Changes in antenna sizes of photosystems during state transitions in granal and stroma-exposed thylakoid membrane of intact chloroplasts in Arabidopsis mesophyll protoplasts. Plant Cell Physiol. 56, 759–768 (2015).
Tikkanen, M. et al. Phosphorylation-dependent regulation of excitation energy distribution between the two photosystems in higher plants. Biochim. Biophys. Acta 1777, 425–432 (2008).
Mekala, N. R., Suorsa, M., Rantala, M., Aro, E. M. & Tikkanen M. Plants actively avoid state-transitions upon changes in light intensity: role of light-harvesting complex II protein dephosphorylation in high light. Plant Physiol. 168, 721–734 (2015).
Goral . et al. Visualising the mobility and distribution of chlorophyll-proteins in higher plant thylakoid membranes: effects of photoinhibition and protein phosphorylation. Plant J. 62, 948–959 (2010).
Herbstová, M., Tietz, S., Kinzel, C., Turkina, M. V. & Kirchhoff, H. Architectural switch in plant photosynthetic membranes induced by light stress. Proc. Natl Acad. Sci. USA 109, 20130–20135 (2012).
Holt, N. E., Fleming, G. R. & Niyogi, K. K. Toward an understanding of the mechanism of nonphotochemical quenching in green plants. Biochemistry 43, 8281–8289 (2004).
Ruban, A. V., Johnson, M. P. & Duffy, C. D. P. Photoprotective molecular switch in the photosystem II antenna. Biochim. Biophys. Acta 1817, 167–181 (2012).
Johnson, M. P. et al. Photoprotective energy dissipation involves the reorganization of photosystem II light harvesting complexes in the grana membranes of spinach chloroplasts. Plant Cell 23, 1468–1479 (2011).
Horton P. et al. Control of the light-harvesting function of chloroplast membranes by aggregation of the LHCII chlorophyll–protein complex. FEBS Lett. 292, 1–4 (1991).
Betterle, N. et al. Light-induced dissociation of an antenna hetero-oligomer is needed for non-photochemical quenching induction. J. Biol. Chem. 284, 15255–15266 (2009).
Kiss, A., Crouchman, S., Ruban, A. V. & Horton, P. The PsbS protein controls the organisation of the photosystem II antenna in higher plant thylakoid membranes. J. Biol. Chem. 283, 3972–3978 (2008).
Belgio, E., Johnson, M. P., Jurić, S. & Ruban, A. V. Higher plant photosystem II light harvesting antenna, not the reaction center, determines the excited state lifetime—both the maximum and the non-photochemically quenched. Biophys. J. 102, 2761–2771 (2012).
Belgio, E., Ungerer, P. & Ruban, A. V. Light harvesting superstructures of green plant chloroplasts lacking photosystems. Plant Cell Env. 38, 2035‐2047 (2015).
Ware, M. A., Giovagnetti, V., Belgio, E. & Ruban, A. V. PsbS protein modulates non-photochemical chlorophyll fluorescence quenching in membranes depleted from photosystems. J. Photochem. Photobiol. Bhttp://dx.doi.org/10.1016/j.jphotobiol.2015.07.016 (2015).
Haferkamp, S., Haase, W., Pascal, A. A., van Amerongen, H. & Kirchhoff, H. Efficient light harvesting by photosystem II requires an optimized protein packing density in grana thylakoids. J. Biol. Chem. 285, 17020–17028 (2010).
Kirchhoff, H., Tremmel, I., Haase, W. & Kubitscheck, U. Supramolecular photosystem II organization in grana thylakoid membranes: Evidence for a structured arrangement. Biochemistry 43, 9204–9213 (2004).
Blackwell, M. F., Gibas, C., Gygax, S., Roman, D. & Wagner B. The plastoquinone diffusion coefficient in chloroplasts and its mechanistic implications. Biochim. Biophys. Acta. 1183, 533–543 (1994).
Tremmel, I. G., Kirchhoff, H., Weis, E. & Farquhar, G.D. Dependence of plastoquinol diffusion on the shape, size, and density of integral proteins. Biochim. Biophys. Acta 1607, 97–109 (2003).
Joliot, P., Lavergne, J. & Béal, D. Plastoquinone compartmentation in chloroplasts. I. Evidence for domains with different rates of photo-reduction. Biochim. Biophys. Acta 1101, 1–12 (1992).
Kirchhoff, H., Horstmann, S. & Weis, E. Control of the photosynthetic electron transport by PQ diffusion microdomains in thylakoids of higher plants. Biochim. Biophys. Acta 1459, 148–168 (2000).
de Bianchi, S., Dall'Osto, L., Tognon, G., Morosinotto, T. & Bassi, R. Minor antenna proteins CP24 and CP26 affect the interactions between photosystem II subunits and the electron transport rate in grana membranes of Arabidopsis. Plant Cell 20, 1012–1028 (2008).
Kovacs, L. et al. Lack of the light harvesting complex CP24 affects the structure and function of the grana membranes of higher plant chloroplasts. Plant Cell 18, 3106–3120 (2006).
Tietz, S. et al. Functional implications of photosystem II crystal formation in photosynthetic membranes. J. Biol. Chem. 290, 14091–14106 (2015).
Kirchhoff, H. et al. Dynamic control of protein diffusion within the granal thylakoid lumen. Proc. Natl Acad. Sci. USA 108, 20248–20253 (2011).
Murakami, S. & Packer, L. Light-induced changes in the conformation and configuration of the thylakoid membrane of Ulva and Porphyra chloroplasts in vivo. Plant Physiol. 45, 289–299 (1970).
Danielsson, R., Albertsson, P. Å., Mamedov, F. & Styring, S. Quantification of photosystem I and II in different parts of the thylakoid membrane from spinach. Biochim. Biophys. Acta 1608, 53–61 (2004).
Acknowledgements
A.V.R. would like to acknowledge The Royal Society for the Wolfson Research Merit Award. M.P.J. acknowledges funding from the Leverhulme Trust, the Krebs Institute, University of Sheffield and Project Sunshine, University of Sheffield. We would like to acknowledge Prof. N. Hunter FRS for the critical reading of the manuscript. This work is dedicated to the memory of Prof. Jan Anderson FRS.
Author information
Authors and Affiliations
Contributions
A.V.R. conceived the idea of this publication, planned the original structure, drafted the manuscript and prepared Figs 1a,b,c,d; 2c,d; 3a,b,e,f. M.P.J. performed freeze-fracture and AFM experiments, helped to write and finalize the manuscript, prepared Figs 1e; 2a,b,d; 3c,d and 4.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Ruban, A., Johnson, M. Visualizing the dynamic structure of the plant photosynthetic membrane. Nature Plants 1, 15161 (2015). https://doi.org/10.1038/nplants.2015.161
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/nplants.2015.161
This article is cited by
-
The cytochrome b6f complex: plastoquinol oxidation and regulation of electron transport in chloroplasts
Photosynthesis Research (2023)
-
Simultaneously measuring pulse-amplitude-modulated (PAM) chlorophyll fluorescence of leaves at wavelengths shorter and longer than 700 nm
Photosynthesis Research (2021)
-
Long-term drought resistance in rice (Oryza sativa L.) during leaf senescence: a photosynthetic view
Plant Growth Regulation (2019)
-
Long-term acclimation of barley photosynthetic apparatus to narrow-band red and blue light
Photosynthetica (2018)
-
Lipid polymorphism in chloroplast thylakoid membranes – as revealed by 31P-NMR and time-resolved merocyanine fluorescence spectroscopy
Scientific Reports (2017)