Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Patterning mechanisms of cytoskeletal and cell wall systems during leaf trichome morphogenesis

Abstract

The plant actin cytoskeleton is an unstable network of filaments that influences polarized growth through poorly understood mechanisms. Here, we used a combination of live cell imaging and finite element computational modelling of Arabidopsis trichome morphogenesis to determine how the actin and microtubule cytoskeletons cooperate to pattern the cell wall and growth. The actin-related protein (ARP)2/3 complex generates an actin meshwork that operates within a tip-localized, microtubule-depleted zone to modulate cell wall anisotropy locally. The actin meshwork also positions an actin bundle network that organizes organelle flow patterns. This activity is required to maintain cell wall thickness gradients that enable tip-biased diffuse growth. These newly discovered couplings between cytoskeletal patterns and wall textures provide important insights into the cellular mechanism of growth control in plants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The geometry of trichome shape change and cell wall strain.
Figure 2: Finite element model of trichome branch morphogenesis.
Figure 3: Growth and cell wall analysis of an ARP2/3 null mutant.
Figure 4: ARP2/3 generates apical actin meshworks within the microtubule-depletion zone.

Similar content being viewed by others

References

  1. Rodriguez, O. C. et al. Conserved microtubule-actin interactions in cell movement and morphogenesis. Nature Cell Biol. 5, 599–609 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Smith, L. G. & Oppenheimer, D. G. Spatial control of cell expansion by the plant cytoskeleton. Annu. Rev. Cell Dev. Biol. 21, 271–295 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Baskin, T. I. Anisotropic expansion of the plant cell wall. Annu. Rev. Cell Dev. Biol. 21, 203–222 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Fayant, P. et al. Finite element model of polar growth in pollen tubes. Plant Cell 22, 2579–2593 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Szymanski, D. B. & Cosgrove, D. J. Dynamic coordination of cytoskeletal and cell wall systems during plant cell morphogenesis. Curr. Biol. 19, R800–811 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, C., Halsey, L. E. & Szymanski, D. B. The development and geometry of shape change in Arabidopsis thaliana cotyledon pavement cells. BMC Plant Biol. 11, 27 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Andriankaja, M. et al. Exit from proliferation during leaf development in Arabidopsis thaliana: a not-so-gradual process. Dev. Cell 22, 64–78 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Walter, A., Silk, W. K. & Schurr, U. Environmental effects on spatial and temporal patterns of leaf and root growth. Annu. Rev. Plant Biol. 60, 279–304 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Paredez, A. R., Somerville, C. R. & Ehrhardt, D. W. Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312, 1491–1495 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Fujita, M. et al. The anisotropy1 D604N mutation in the Arabidopsis cellulose synthase1 catalytic domain reduces cell wall crystallinity and the velocity of cellulose synthase complexes. Plant Physiol. 162 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mauricio, R. Costs of resistance to natural enemies in field populations of the annual plant Arabidopsis thaliana. Am. Nat. 151, 20–28 (1998).

    CAS  PubMed  Google Scholar 

  12. Tiwari, S. C. & Wilkins, T. A. Cotton (Gossypium hirsutum) seed trichomes expand via diffuse growing mechanism. Can. J. Bot. 73, 746–757 (1995).

    Article  Google Scholar 

  13. Szymanski, D. B., Marks, M. D. & Wick, S. M. Organized F-actin is essential for normal trichome morphogenesis in Arabidopsis. Plant Cell 11, 2331–2347 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mathur, J., Spielhofer, P., Kost, B. & Chua, N. The actin cytoskeleton is required to elaborate and maintain spatial patterning during trichome cell morphogenesis in Arabidopsis thaliana. Development 126, 5559–5568 (1999).

    CAS  PubMed  Google Scholar 

  15. Zhang, C. et al. Arabidopsis SCARs function interchangeably to meet actin-related protein 2/3 activation thresholds during morphogenesis. Plant Cell 20, 995–1011 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mathur, J. et al. Arabidopsis CROOKED encodes for the smallest subunit of the ARP2/3 complex and controls cell shape by region specific fine F-actin formation. Development 130, 3137–3146 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Le, J., El-Assal, S. E., Basu, D., Saad, M. E. & Szymanski, D. B. Requirements for Arabidopsis ATARP2 and ATARP3 during epidermal development. Curr. Biol. 13, 1341–1347 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Yanagisawa, M., Zhang, C. & Szymanski, D. B. ARP2/3-dependent growth in the plant kingdom: SCARs for life. Front. Plant Sci. 4, 166 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Deeks, M. J., Kaloriti, D., Davies, B., Malho, R. & Hussey, P. J. Arabidopsis NAP1 is essential for ARP2/3-dependent trichome morphogenesis. Curr. Biol. 14, 1410–1414 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, X., Dyachok, J., Krishnakumar, S., Smith, L. G. & Oppenheimer, D. G. IRREGULAR TRICHOME BRANCH1 in Arabidopsis encodes a plant homolog of the actin-related protein2/3 complex activator Scar/WAVE that regulates actin and microtubule organization. Plant Cell 17, 2314–2326 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sambade, A., Findlay, K., Schaffner, A. R., Lloyd, C. W. & Buschmann, H. Actin-dependent and -independent functions of cortical microtubules in the differentiation of Arabidopsis leaf trichomes. Plant Cell 26 (2014).

  22. Schwab, B. et al. Regulation of cell expansion by the DISTORTED genes in Arabidopsis thaliana: actin controls the spatial organization of microtubules. Mol. Genet. Genome 269, 350–360 (2003).

    Article  CAS  Google Scholar 

  23. Beilstein, M. & Szymanski, D. in The Plant Cytoskeleton in Cell Differentiation and Development (ed. Hussey, P. ) 265–289 (Blackwell, 2004).

    Google Scholar 

  24. Gasser, T. C., Ogden, R. W. & Holzapfel, G. A. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3, 15–35 (2006).

    Article  PubMed  Google Scholar 

  25. Huang, R., Becker, A. A. & Jones, I. A. Modelling cell wall growth using a fibre-reinforced hyperelastic-viscoplastic constitutive law. J. Mech. Phys. Solids 60, 750–783 (2012).

    Article  Google Scholar 

  26. McKenna, S. T. et al. Exocytosis precedes and predicts the increase in growth in oscillating pollen tubes. Plant Cell 21, 3026–3040 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rounds, C. M., Lubeck, E., Hepler, P. K. & Winship, L. J. Propidium iodide competes with Ca(2+) to label pectin in pollen tubes and Arabidopsis root hairs. Plant Physiol. 157, 175–187 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Timoshenko, S. Strength of materials (New York, 1930).

  29. Basu, D., Le, J., Zakharova, T., Mallery, E. L. & Szymanski, D. B. A SPIKE1 signaling complex controls actin-dependent cell morphogenesis through the heteromeric WAVE and ARP2/3 complexes. Proc. Natl Acad. Sci. USA 105, 4044–4049 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Basu, D., El-Assal, S. E., Le, J., Mallery, E. L. & Szymanski, D. B. Interchangeable functions of Arabidopsis PIROGI and the human WAVE complex subunit SRA1 during leaf epidermal development. Development 131, 4345–4355 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Basu, D. et al. DISTORTED3/SCAR2 is a putative Arabidopsis WAVE complex subunit that activates the Arp2/3 complex and is required for epidermal morphogenesis. Plant Cell 17, 502–524 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kotchoni, S. O. et al. The association of the Arabidopsis actin-related protein (ARP) 2/3 complex with cell membranes is linked to its assembly status, but not its activation. Plant Physiol. 151, 2095–2109 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. El-Assal, S. E., Le, J., Basu, D., Mallery, E. L. & Szymanski, D. B. DISTORTED2 encodes an ARPC2 subunit of the putative Arabidopsis ARP2/3 complex. Plant J. 38, 526–538 (2004).

    Article  CAS  Google Scholar 

  34. Sampathkumar, A. et al. Patterning and lifetime of plasma membrane-localized cellulose synthase is dependent on actin organization in Arabidopsis interphase cells. Plant Physiol. 162, 675–688 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lu, L., Lee, Y.-R. J., Pan, R., Maloof, J. N. & Liu, B. An internal motor kinesin is associated with the Golgi apparatus and plays a role in trichome morphogenesis in Arabidopsis. Mol. Biol. Cell 16, 811–823 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Oda, Y. & Fukuda, H. Initiation of cell wall pattern by a Rho- and microtubule-driven symmetry breaking. Science 337, 1333–1336 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. McCollum, D., Feoktistova, A., Morphew, M., Balasubramanian, M. & Gould, K. L. The Schizosaccharomyces pombe actin-related protein, Arp3, is a component of the cortical actin cytoskeleton and interacts with profilin. EMBO J. 15, 6438–6446 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Winter, D., Podtelejnikov, A. V., Mann, M. & Li, R. The complex containing actin-related proteins Arp2 and Arp3 is required for the motility and integrity of yeast actin patches. Curr. Biol. 7, 519–529 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Evangelista, M., Pruyne, D., Amberg, D. C., Boone, C. & Bretscher, A. Formins direct Arp2/3-independent actin filament assembly to polarize cell growth in yeast. Nature Cell Biol. 4, 260–269 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Le, J., Mallery, E. L., Zhang, C., Brankle, S. & Szymanski, D. B. Arabidopsis BRICK1/HSPC300 is an essential WAVE-complex subunit that selectively stabilizes the Arp2/3 activator SCAR2. Curr. Biol. 16, 895–901 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Djakovic, S., Dyachok, J., Burke, M., Frank, M. J. & Smith, L. G. BRICK1/HSPC300 functions with SCAR and the ARP2/3 complex to regulate epidermal cell shape in Arabidopsis. Development 133, 1091–1100 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Dyachok, J. et al. Plasma membrane-associated SCAR complex subunits promote cortical F-actin accumulation and normal growth characteristics in Arabidopsis roots. Mol. Plant 1, 990–1006 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Zhang, C., Mallery, E. & Szymanski, D. B. ARP2/3 localization in Arabidopsis leaf pavement cells: a diversity of intracellular pools and cytoskeletal interactions. Front. Plant Biol. 4, 1–16 (2013).

    Google Scholar 

  45. El-Assal, S. E., Le, J., Basu, D., Mallery, E. L. & Szymanski, D. B. Arabidopsis GNARLED encodes a NAP125 homologue that positively regulates ARP2/3. Curr. Biol. 14, 1405–1409 (2004).

    Article  CAS  Google Scholar 

  46. Ojangu, E. L. et al. Myosins XI-K, XI-1, and XI-2 are required for development of pavement cells, trichomes, and stigmatic papillae in Arabidopsis. BMC Plant Biol. 12, 81 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fendrych, M. et al. The Arabidopsis exocyst complex is involved in cytokinesis and cell plate maturation. Plant Cell 22, 3053–3065 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Boudaoud, A. An introduction to the mechanics of morphogenesis for plant biologists. Trends Plant Sci. 15, 353–360 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Szymanski, D. B. The kinematics and mechanics of leaf expansion: new pieces to the Arabidopsis puzzle. Curr. Opin. Plant Biol. 22C, 141–148 (2014).

    Article  Google Scholar 

  50. Butterworth, K. M., Adams, D. C., Horner, H. T. & Wendel, J. F. Initiation and early development of fiber in wild and cultivated cotton. Int. J. Plant Sci. 170, 561–574 (2009).

    Article  Google Scholar 

  51. Forouzesh, E., Goel, A., Mackenzie, S. A. & Turner, J. A. In vivo extraction of Arabidopsis cell turgor pressure using nanoindentation in conjunction with finite element modeling. Plant J. 73, 509–520 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank David Umulis for helpful discussions. Thanks to Adam Fessenden for reflected light time-lapse imaging. We also thank Chia-Ping Huang and the Purdue Life Science Microscopy Facility for their expert assistance. This research was supported by NSF Grant IOS Grant No. 1249652 to D.B.S and J.A.T. and NSF MCB Grant No. 1121893 to D.B.S.

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the experimental design, data collection, data analysis and manuscript preparation. D.S. conceived the project. J.T. and A.D. developed the finite element models. S.B. did the reflected light and TEM analyses. E.M. created the ARP2/3–GFP live-cell probe. M.Y. conducted all other wet laboratory experiments.

Corresponding author

Correspondence to Daniel B. Szymanski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yanagisawa, M., Desyatova, A., Belteton, S. et al. Patterning mechanisms of cytoskeletal and cell wall systems during leaf trichome morphogenesis. Nature Plants 1, 15014 (2015). https://doi.org/10.1038/nplants.2015.14

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2015.14

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing