Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Achieving more crop per drop


Raising the water productivity of crops, such that they yield more with less water, is one route to raising food production over the coming century. To achieve this goal, breeders must look beyond the conservative strategies that plants employ to cope with drought in the wild.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of irrigation on crop productivity in the Yellow River valley in northwest China.


  1. WWAP The United Nations World Water Development Report 2015: Water for a Sustainable World (UNESCO, 2015).

  2. Du, T. et al. J. Exp. Bot. 66, 2253–2269 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li, Y. et al. Food Energy Secur. 3, 19–32 (2014).

    Article  Google Scholar 

  4. Godfray, H. C. J. & Garnett, T. Phil. Trans. R. Soc. B 369, 20120273 (2014).

    Article  PubMed  Google Scholar 

  5. Porter, J. R. et al. in Climate Change: Impacts, Adaptation and Vulnarability (eds Aggarwal, P. & Hakala, K. ) Ch. 7 (IPCC, Cambridge Univ. Press, 2014).

    Google Scholar 

  6. Zhu X G. et al. Plant Physiol 145, 513–526 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Passiour, J. B. J. Aust. Inst. Agric. Sci. 43, 117–120 (1977).

    Google Scholar 

  8. Tardieu, F. J. Exp. Bot. 63, 25–31 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Richards, R. et al. Funct. Plant Biol. 37, 85–97 (2010).

    Article  Google Scholar 

  10. Lynch, J. P. Ann. Bot. 112, 347–357 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhu, J., Brown, K. M. & Lynch, J. P. Plant Cell Environ. 33, 740–749 (2010).

    PubMed  Google Scholar 

  12. Ribaut, J. in Handbook of Maize: Its Biology (eds Bennetzen, J. L. & Hake, S. C. ) 311–344 (Springer, 2009).

    Book  Google Scholar 

  13. Messina, C. D. J. Exp. Bot. 62, 855–868 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Nuccio, M. L. et al. Nature Biotechnol. (2015).

  15. Zalewski, W. J. Exp. Bot. 61, 1839–51 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Chapman, S. C. Euphytica 161, 195–208 (2008).

    Article  Google Scholar 

  17. Postma, J. A., Dathe, A. & Lynch, J. P. Plant Physiol. 166, 590–602 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Parent, B. & Tardieu, F. J. Exp. Bot. 65, 6179–6189 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Tuberosa, R. Front. Physiol. 3, 347 (2012).

  20. Trachsel, S. et al. Plant Soil 314, 75–87 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding authors

Correspondence to William J. Davies or Malcolm J. Bennett.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davies, W., Bennett, M. Achieving more crop per drop. Nature Plants 1, 15118 (2015).

Download citation

  • Published:

  • DOI:

This article is cited by


Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene