Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Floral pigmentation patterns provide an example of Gloger's rule in plants

Abstract

Ecogeographic rules explain spatial trends in biodiversity, species interactions and phenotypes1. Gloger's rule and its corollaries state that pigmentation of endothermic animals will increase from more polar to equatorial regions due to changing selective pressures including heat, humidity, predation and UV irradiance24. In plants, floral pigmentation varies within and among taxa, yet causes of wide-scale geographic variation are lacking. We show that Gloger's rule explains patterns of variation in UV-absorbing floral pigmentation in a widespread plant, Argentina anserina (Rosaceae). Specifically, the floral pigmentation pattern unique to the UV spectrum (UV ‘bullseye’) increases with proximity to the Equator in both hemispheres, and larger bullseyes are associated with higher UVB incidence. Experiments confirm UV as an agent of selection and bullseye size as a target. Results extend the generality of an ecogeographic rule—formulated for animals—to plants, implicating UV as a selective agent on a floral trait generally assumed to enhance plant–pollinator interactions. Global change is expected to alter UV irradiance in terrestrial systems5, potentially intensifying the importance of UV-mediated selection to floral evolution. Because floral UV reflectance and pattern enhance pollinator attraction6,7, altered selective regimes could disrupt coevolved plant–pollinator interactions, weakening an important ecosystem service8.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Size of the floral UV bullseye increases with proximity to the Equator in silverweed cinquefoil (A. anserina).
Figure 2: Hypothesis for how variation in the UV bullseye influences floral microenvironment.
Figure 3: Optimal UV bullseye size increases in the presence of ambient UV.
Figure 4: UV bullseye size is a target of selection via UV irradiance.

Similar content being viewed by others

References

  1. Gaston, K. J., Chown, S. L. & Evans, K. L. Ecogeographical rules: elements of a synthesis. J. Biogeogr. 35, 483–500 (2008).

    Article  Google Scholar 

  2. Gloger, C. L. Das Abändern der Vögel durch Einfluss der Klima's (A. Schulz, 1833).

    Book  Google Scholar 

  3. Burtt, E. H. The adaptiveness of animal colors. BioScience 31, 723–729 (1981).

    Article  Google Scholar 

  4. Caro, T. The adaptive significance of coloration in mammals. BioScience 55, 125–136 (2005).

    Article  Google Scholar 

  5. Ballaré, C. L., Caldwell, M. M., Flint, S. D., Robinson, S. A. & Bornman, J. F. Effects of solar ultraviolet radiation on terrestrial ecosystems. Patterns, mechanisms, and interactions with climate change. Photochem. Photobiol. Sci. 10, 226–241 (2011).

    Article  Google Scholar 

  6. Johnson, S. D. & Andersson, S. A simple field method for manipulating ultraviolet reflectance of flowers. Can. J. Bot. 80, 1325–1328 (2002).

    Article  Google Scholar 

  7. Koski, M. H. & Ashman, T.-L. Dissecting pollinator responses to a ubiquitous ultraviolet floral pattern in the wild. Funct. Ecol. 28, 868–877 (2014).

    Article  Google Scholar 

  8. Costanza, R. et al. The value of the world's ecosystem services and natural capital. Nature 387, 253–260 (1997).

    Article  Google Scholar 

  9. Jablonski, N. G. & Chaplin, G. Human skin pigmentation as an adaptation to UV radiation. Proc. Natl. Acad. Sci. USA 107, 8962–8968 (2010).

    Article  Google Scholar 

  10. Santana, S. E., Lynch Alfaro, J. & Alfaro, M. E. Adaptive evolution of facial colour patterns in Neotropical primates. Proc. R. Soc. B Biol. Sci. 279, 2204–2211 (2012).

    Article  Google Scholar 

  11. Hamada, Y., Suryobroto, B., Goto, S. & Malaivijitnond, S. Morphological and body color variation in Thai Macaca fascicularis North and South of the Isthmus of Kra. Int. J. Primatol. 29, 1271–1294 (2008).

    Article  Google Scholar 

  12. Lai, Y.-C., Shiroishi, T., Moriwaki, K., Motokawa, M. & Yu, H.-T. Variation of coat color in house mice throughout Asia. J. Zool. 274, 270–276 (2008).

    Article  Google Scholar 

  13. Millien, V. et al. Ecotypic variation in the context of global climate change: revisiting the rules. Ecol. Lett. 9, 853–869 (2006).

    Article  Google Scholar 

  14. Guldberg, L. D. & Atsatt, P. R. Frequency of reflection and absorption of ultraviolet light in flowering plants. Am. Midl. Nat. 93, 35–43 (1975).

    Article  Google Scholar 

  15. Harborne, J. B. & Nash, R. J. Flavonoid pigments responsible for ultraviolet patterning in petals of the genus Potentilla. Biochem. Syst. Ecol. 12, 315–318 (1984).

    Article  Google Scholar 

  16. Gorton, H. L. & Vogelmann, T. C. Effects of epidermal cell shape and pigmentation on optical properties of Antirrhinum petals at visible and ultraviolet wavelengths. Plant Physiol. 112, 879–888 (1996).

    Article  Google Scholar 

  17. Rausher, M. D. Evolutionary transitions in floral color. Int. J. Plant Sci. 169, 7–21 (2008).

    Article  Google Scholar 

  18. Whittall, J. B. & Strauss, S. in Ecology and Evolution of Flowers 120–138 (Oxford Univ. Press, 2006).

    Google Scholar 

  19. Torabinejad, J. M., Caldwell, M., Flint, S. A. & Durham, S. Susceptibility of pollen to UV-B radiation: an assay of 35 taxa. Am. J. Bot. 84, 360–369 (1998).

    Article  Google Scholar 

  20. Koti, S. Interactive effects of carbon dioxide, temperature, and ultraviolet-B radiation on soybean (Glycine max L.) flower and pollen morphology, pollen production, germination, and tube lengths. J. Exp. Bot. 56, 725–736 (2005).

    Article  Google Scholar 

  21. Herman, J. R. Global increase in UV irradiance during the past 30 years (1979–2008) estimated from satellite data. J. Geophys. Res. 115, D04203 (2010).

  22. Yoshioka, Y. et al. Intraspecific variation in the ultraviolet colour proportion of flowers in Brassica rapa L. Plant Breed. 124, 551–556 (2005).

    Article  Google Scholar 

  23. Koski, M. H. & Ashman, T.-L. Quantitative variation, heritability, and trait correlations for ultraviolet floral traits in Argentina anserina (Rosaceae): Implications for floral evolution. Int. J. Plant Sci. 174, 1109–1120 (2013).

    Article  Google Scholar 

  24. Oksanen, J. et al. vegan: Community Ecology Package (2013); http://cran.r-project.org/web/packages/vegan/index.html.

    Google Scholar 

  25. Schluter, D. Estimating the form of natural selection on a quantitative trait. Evolution 42, 849–861 (1988).

    Article  Google Scholar 

  26. Conner, J. K., Rice, A. M., Stewart, C. & Morgan, M. T. Patterns and mechanisms of selection on a family-diagnostic trait: evidence from experimental manipulation and lifetime fitness selection gradients. Evolution 57, 480–486 (2003).

    Article  Google Scholar 

  27. Jablonski, N. The evolution of human skin coloration. J. Hum. Evol. 39, 57–106 (2000).

    Article  Google Scholar 

  28. Arista, M., Talavera, M., Berjano, R. & Ortiz, P. L. Abiotic factors may explain the geographical distribution of flower colour morphs and the maintenance of colour polymorphism in the scarlet pimpernel. J. Ecol. 101, 1613–1622 (2013).

    Article  Google Scholar 

  29. Zhang, C., Yang, Y.-P. & Duan, Y.-W. Pollen sensitivity to ultraviolet-B (UV-B) suggests floral structure evolution in alpine plants. Sci. Rep. 4, 4520 (2014).

  30. Dupont, Y. L., Padrón, B., Olesen, J. M. & Petanidou, T. Spatio-temporal variation in the structure of pollination networks. Oikos 118, 1261–1269 (2009).

    Article  Google Scholar 

  31. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article  Google Scholar 

  32. Beckmann, M. et al. glUV: A global UV-B radiation dataset for macroecological studies. Methods Ecol. Evol. 5, 372–383 (2014).

    Article  Google Scholar 

  33. Lande, R. & Arnold, S. J. The measurement of selection on correlated characters. Evolution 37, 1210–1226 (1983).

    Article  Google Scholar 

  34. Etterson, J. R. Evolutionary potential of Chamaecrista fasciculata in relation to climate change. I. Clinal patterns of selection along an environmental gradient in the great plains. Evolution 58, 1446–1456 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Reithel and A. Robertson for logistical support, S. Barratt-Boyes, G. Arceo-Gomez, T. Knight, S.D. Smith and Ashman Lab members for discussion, BLM and USFS for access to populations, N. Morehouse for access to spectrophotometers and A.M. Koski, L.J. Koski and T.M. Byers for field assistance. Funding was provided by grants from SSE, BSA, Sigma-Xi, RMBL and National Geographic to M.H.K., NSF DEB 1020523 and 1241006 to T-L.A. and NSF DEB 1309450 to M.H.K. and T-L.A. M.H.K. was supported by a NSF GRFP and UPitt Mellon Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

M.H.K. and T-L.A. designed the research; M.H.K. performed experiments and analyses; M.H.K. and T-L.A. wrote the paper.

Corresponding author

Correspondence to Matthew H. Koski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koski, M., Ashman, TL. Floral pigmentation patterns provide an example of Gloger's rule in plants. Nature Plants 1, 14007 (2015). https://doi.org/10.1038/nplants.2014.7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2014.7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing