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Not just a colourful metaphor: modelling the landscape of
cellular development using Hopfield networks
Atefeh Taherian Fard1, Sriganesh Srihari1, Jessica C Mar2,3 and Mark A Ragan1

The epigenetic landscape was introduced by Conrad Waddington as a metaphor of cellular development. Like a ball rolling down a
hillside is channelled through a succession of valleys until it reaches the bottom, cells follow specific trajectories from a pluripotent
state to a committed state. Transcription factors (TFs) interacting as a network (the gene regulatory network (GRN)) orchestrate this
developmental process within each cell. Here, we quantitatively model the epigenetic landscape using a kind of artificial neural
network called the Hopfield network (HN). An HN is composed of nodes (genes/TFs) and weighted undirected edges, resulting in a
weight matrix (W) that stores interactions among the nodes over the entire network. We used gene co-expression to compute the
edge weights. Through W, we then associate an energy score (E) to each input pattern (pattern of co-expression for a specific
developmental stage) such that each pattern has a specific E. We propose that, based on the co-expression values stored in W,
HN associates lower E values to stable phenotypic states and higher E to transient states. We validate our model using time course
gene-expression data sets representing stages of development across 12 biological processes including differentiation of human
embryonic stem cells into specialized cells, differentiation of THP1 monocytes to macrophages during immune response and
trans-differentiation of epithelial to mesenchymal cells in cancer. We observe that transient states have higher energy than the
stable phenotypic states, yielding an arc-shaped trajectory. This relationship was confirmed by perturbation analysis. HNs offer an
attractive framework for quantitative modelling of cell differentiation (as a landscape) from empirical data. Using HNs, we identify
genes and TFs that drive cell-fate transitions, and gain insight into the global dynamics of GRNs.
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INTRODUCTION
In the course of development, cells take on a succession of distinct
phenotypic states, from an initial totipotent or pluripotent state
through to a final differentiated state in which the cell is
committed to a particular location and function. This commitment
is typically progressive, with cells passing through a hierarchy
of increasingly specialized intermediate states along a develop-
mental trajectory. The transition from one intermediate state to
the next is driven by the concerted action of transcription factors
(TFs) and other biomolecules as part of the gene regulatory
network (GRN).
Conrad Waddington introduced the epigenetic landscape as a

metaphor for cellular development.1 Like a population of balls
rolling down a rough hillside, cells follow specific trajectories
(valleys) and encounter decision points (inflections) before
eventually coming to rest in one or another potentially steady
state, termed attractors.2,3 Importantly, Waddington depicted the
topography of the landscape as determined by a system of
underpinning interconnected cables. Although this metaphor
preceded our current understanding of the relationship among
genes, transcripts and proteins, it is easily interpretable today as
depicting the framework for control of cellular differentiation and
phenotype by dynamics of the underlying GRN.
To model this landscape, Huang4 proposed a “quasi-potential”

that connects the elevation of the landscape to the likelihood
of the corresponding cell state. For Huang4, each point in the

landscape represents a gene-expression configuration of a binary
regulatory circuit. An alternative formulation5 emphasises the
possibility of cell trajectories without necessarily “rolling downhill”,
e.g., the landscape is modelled as a non-hierarchical “epigenetic
disc” in which cell fates can be interconverted without necessarily
traversing back up through a developmental hierarchy. Other
formulations emphasise the underlying molecular mechanisms
including the role of DNA methylation, histone modification and
signalling pathways in driving cell-fate decisions.6–8

Modern experimental evidence does in fact show hierarchies of
cell fates9 with TFs driving cell development. For instance,
Takahashi and Yamanaka10 demonstrated that small sets of TFs
(the “Yamanaka cocktail”) are sufficient to induce pluripotency in a
differentiated somatic cell, i.e., the cell is reprogrammed back
to its original state at the top of Waddington’s landscape.
Experimental protocols exist for generating specialized cells
including neurons,11 hepatocytes,12 macrophages13 and cardio-
myocytes from undifferentiated fibroblasts14 using small sets of
TFs, demonstrating cell-fate conversion and reprogramming.
Nonetheless it remains controversial whether a Waddington

(or similar) landscape can be computed solely from empirical data.
The view of Waddington’s landscape as a “colourful metaphor”15

that cannot be quantified has been echoed by several
authors.15–17 The recent availability of single-cell transcriptomic
(and other omic) time course data provides new opportunity to
explore landscape models that could provide insight into the
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GRNs that underpin cellular development. However, there are
issues in quantifying this landscape, including design of the
algorithmic framework per se, the approach to data utilisation and
mapping of actual developmental stages to features (e.g.,
attractors) of landscape models.
Dynamic systems of biomolecular interactions have been

modelled using Bayesian networks,18–20 generalised logical
networks,21 constraint-based models,22 Petri nets,23 stochastic
master equations24 or agent-based approaches.25 Although these
approaches can identify stable states, in general they do not
generate a solution landscape of the sort introduced above.
In the context of GRNs and cell fate, attractor landscapes have

been described using Boolean networks,26–28 neural networks29–31

or systems of ordinary differential equations (ODEs);32 however,
these have seen application mostly in computational simulation
rather than in the analysis of empirical data. For instance, Wang
et al.33 used ODEs and simulated data to construct a probabilistic
“pseudo-potential” energy landscape using only two TFs, GATA1
and PU.1, to identify the developmental path of cells from
undifferentiated to differentiated states. This system permits a
binary cell-fate decision such as macrophage/monocyte or
megakaryocyte/erythrocyte. Similar probabilistic potential land-
scapes have been used to model lysis-lysogen switching in
bacteriophage λ34 and the mitogen-activated protein kinase
(MAPK) signal transduction network.35 Srihari et al.36 used
binarized gene-expression data in an optimisation framework to
derive attractors of cell states and identify TFs switched between
these attractors. Ferrell37 proposed an alternative landscape for
the developmental processes of cell-fate induction and inhibition,
in which cell-fate commitment corresponds to the disappearance
of a valley rather than the creation of a new valley. Davila-
Velderrain et al.38 provide a comprehensive overview. Problems
associated with these models include (lack of) computational
scalability and, for ODEs, the need for rate constants.
Mathematical models and GRNs have their own descriptions of

states, trajectories and attractors. Questions pertain to whether
and how phenotypic states of a cell, which are maintained and
regulated by a GRN, can be mapped to an attractor landscape
model computed from gene-expression and/or other empirical
data. Here we use Hopfield networks (HNs) to model an attractor
landscape that can serve as a framework to understand the
dynamics of the underpinning GRN.
HNs, introduced by John Hopfield in 1982, are auto-associative

(recurrent) artificial neural networks. Input patterns to the HN are

associated with distinct attractors of the network, and can later be
recalled even from partial or noisy inputs. Koulakov and
Lazebnik29 used an HN to simulate fusions between different
types of cells corresponding to distinct attractors of the HN,
concluding that fusion helps the cells reach an attractor state that
would otherwise be inaccessible. Lang et al.31 used a similar
approach to model and explain partially reprogrammed cell fates,
and identified driver TFs involved in this process. They employed
binarized gene-expression values, based on a conditional
probability distribution derived from global histone-modification
data, which reflect the epigenetic state of TFs and developmental
signals in the landscape. Maetschke and Ragan,30 on the other
hand, constructed an HN from static gene-expression data for
different subtypes of cancer, and showed that cancer subtypes
can be characterized as distinct attractors of an HN.
Here we construct HNs from large-scale gene-expression time

course data, and map developmental trajectories to Hopfield
energy profiles in this landscape. We find that after cells are
induced to differentiate, parts of their GRNs become less tightly
correlated, as expected for a cell in transition from one cell-fate
to another. The topography of these landscapes reflects the
correlated activity of key genes that have been experimentally
shown to drive cell-fate transitions and decision-making.

RESULTS
Here we describe the HN energy landscape generated from the
first case study.

Differentiation of HES2 stem cells
This data set consisted of 12 samples in 4 groups, assayed with
48,687 expression probes of which 3,753 remained after feature
selection. Figure 1 shows the energy landscape of fractionated
HES2 stem cells. For cells of group P7, which are dormant but
inducible to a pluripotent state, we observe a relatively low-
energy score EP7 =− 1320897, i.e., a low elevation on the Hopfield
energy landscape. On induction, these cells enter intermediate
state P6 followed by P5, where we see an increase in energy to
EP6 =− 755220 and EP5 =− 599724 before the cells reach the
differentiated state P4 with the lowest energy EP4 =− 3307223
(Figure 2a). This progression traces a trajectory on the Hopfield
energy landscape. Two views of this trajectory are shown in
Figure 1: the left plot shows the three-dimensional view of the

Figure 1. Hopfield energy landscape of the first case study (GSE13201) from two different perspectives. The x and y axes represent the first and
second principal components of the data; the z axis represents the energy E. The left panel show side views of the landscape; the elevation of
each group on the landscape is clearly visible. The right panel shows the top view of the landscape; the trajectory of cell movement is visible
in the (x,y) plane. P7 (EP7=− 1320897) cells are positioned at the lowest level of the Hopfield energy landscape. The higher energies of the
transient groups (P6 and P5, EP6=− 755220 and EP5=− 599724) are followed by a decrease in energy to P4 (EP4=− 3307223) resulting in the
observed trajectory.
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Hopfield energy landscape, while the right plot shows the
(inferred) trajectory driven by changes in expression of the genes
that contribute to principal component (PC) 1 and 2.
To ensure that the Hopfield energies indeed correspond to

stages of differentiation as captured by the expression profiles (i.e.,
that low Hopfield energies represent stable phenotypic states and
high energies transition states) and are not merely an artefact, we
progressively perturbed the gene-expression values for each
stage, and computed the energies of the resulting HNs (Figure 3a).
If random perturbation does not alter the Hopfield energy
significantly, that cellular phenotype is stable and the underlying
network maps to an attractor in the Hopfield landscape. On the
other hand, if the perturbed networks tend to have significantly
different energies, or conversely if the energy of the network
before perturbation is similar to that of the randomly perturbed
states, then the cells are in a transient state that can be
represented as a hill in the Hopfield landscape.
We observed that when 5% of the gene-expression values are

perturbed, energies for the first (P7) and last (P4) groups show

greater difference vis-a-vis the random network (Figure 3a), and
maintain lower energy values. By contrast, energies of the
transient groups P5 and P6 are significantly (each P value 0.0)
closer to that of the random network at all investigated levels of
perturbation up to 50% (Figure 3a). This demonstrates that
attractors are robust to perturbation, and confirms that Hopfield
energy profiles can describe profiles of cellular differentiation.
We identified TFs and genes that are potentially major drivers of

cell-state transition by comparing their discretized expression
values between successive stages, and checking to see if they
have switched (from − 1 to +1 or vice versa). The feature-selected
genes that switch activity between groups at each transition are
listed in Supplementary Table S2. Different numbers of genes are
switched at each transition, reflecting the dynamic behaviour of
the GRN during development.39 Table 1 lists the Gene Ontology
(GO) Biological Process terms40 and KEGG pathways41 most
over-represented among the top 100 genes switched between
the first and last groups. Among the enriched GO terms are
cell-fate determination and cellular differentiation.42,43 The KEGG
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Figure 2. Differences between the mean of energy values for cell stages in the four case studies. (a, GSE13201; b, GSE8091; c, THP1-Mac and
d, GSE17708. Significance: p-value= 0 “***”, p-valueo0.001 “**”, p-valueo0.01 “*”).
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pathways41 most-enriched were Hedgehog signalling, which
governs a wide range of processes during embryonic develop-
ment and controls stem-cell proliferation44 and Wnt signalling, a
major player in stem-cell self-renewal and differentiation.45

Among the switched genes we find FOXA1, GATA4, CD9 and
OCT4 TFs involved in regulation of stem-cell differentiation
(DAVID46,47). Specifically, the differentiation markers FOXA1 and
GATA4 are upregulated in P4, whereas the pluripotency markers
CD9 and OCT4 are upregulated in P7 (Supplementary Figure S1).
For the remaining case studies, we inferred different genes to

have switched expression, and different pathways and biological
processes to be enriched, but we always observed the same
pattern of energy changes across time points (Supplementary
Tables S2 and S3). Results of the three other main case studies are
presented in Figures 2–4 and Supplementary Figure S1, and
Table 1 and Supplementary Table S2; for all others please see the
Supplementary Material (Supplementary Tables S1, S3 and S4;
Supplementary Figures S2 and S3).

DISCUSSION AND CONCLUSION
We computed developmental landscapes from single-cell gene-
expression data in 12 sets of time course data sets, using the
mathematical formalism of the Hopfield recurrent neural network.

Each point in each landscape represents the state of a cell; its
elevation is determined by the energy E, which we compute from
the pattern of co-variation of gene expression in that cell. For each
landscape model, groups of cells at the same developmental
stage, and thus sharing a common pattern of gene expression, are
positioned close together. As we construct the landscapes based
on the set of genes showing the greatest variation in expression
across the time points in each data set, the models reflect the
molecular biological processes underlying cell development.
In our HN models, the energy of a state space does not reflect

its likelihood; instead, E measures the extent of co-variation over
all pairs of feature-selected genes, capturing a distinct pattern
of gene expression which represents a cellular phenotype.48

Strong co-variation yields a relatively low energy, whereas looser
co-variation gives a high energy. Along a time course as the GRN is
differentially regulated or rewired, changes in the patterns of
co-variation are reflected as a trajectory on our landscape. For
these 12 data sets, identities of the switched genes provide
insights into functional modules, many of which (e.g., Hedgehog,
Wnt and MAPK signalling pathways) have previously been
validated experimentally.
We selected a form of perturbation analysis to build confidence

in our energy values. The perturbation results make it clear that
the energy values we compute for the initial and final states are far

Figure 3. Perturbation analysis of time-specific networks for each data set. a, GSE13201; b, GSE8091; c, THP1-Mac and d, GSE17708. The y axis
represents the mean distance of the perturbed networks (100-fold) from the random network. We progressively randomized a subset of 5, 10,
20, 50 and 90% gene-expression values of randomly selected genes, and compared the energy values of the original networks to those
obtained from randomly generated networks.
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from those of random networks; this allows us to make
comparisons among states. The set of energy values arising from
perturbation analysis should not be taken as an estimate of the
stability of an attractor, or the time or energy a cell needs to move
out of that attractor state; for such concepts, new methods remain
to be developed.
Different algorithmic frameworks are available to describe

systems of biomolecular interactions. HNs are computationally
simple, and our results demonstrate that they can capture trajec-
tories of cellular development using only gene-expression data.
Following Maetschke and Ragan30 and Lang et al.31 we

employed gene-expression data, typically at genome-wide scale,
as input. Like these authors, we sought to reduce noise (and
thereby avoid spurious attractors) and improve computability by
first carrying out feature selection. Thus we based each analysis on
the set of genes (probes) most-informative in its respective
context. Lang et al.31 further used histone-modification data to
establish a threshold for the binarization of gene-expression
values. In principle, any type of data that provides patterns
characteristic of cells at different developmental stages or time
points could be input directly into the HN, including transcrip-
tomic data for gene expression. Indeed it would be possible to use
HNs to build a landscape model over mixed data types, yielding a
unique approach to integrating data in developmental systems
biology.
Models are abstractions of reality, and a mapping is required to

link features of a model to events in a real process. Here, particular
care is required to describe this mapping, as both the real physical
GRN in cells, and the HN framework of our model, employ
concepts of states, trajectories and attractors.30 At a given time, a
cell is described by a state that reflects the overall pattern of
interactions within its GRN. In the Hopfield framework, state refers
to the value of H(t)(s), where t is the update cycle of the HN.
Because our aim here is to position each cell on the landscape,
we did not allow the HN to converge to its lowest energy, but
instead use the observed expression pattern to compute E.

These data sets are not dynamic in the sense of measuring gene
expression in a fixed set of cells through a succession of time
points. Rather, we position snapshots of the system (Hopfield
energy profiles) in a common landscape model, then draw on
external information (e.g., sampling order from a population or
expression of surface markers) to trace a temporal progression
(trajectory) across the landscape.
In the HN formalism, attractors are local minima of the energy

landscape, and in the present context correspond to phenotypic
states maintained by the underlying GRN. Here, cells start out in a
(perhaps artificially) stable state for which we calculate a low
energy. After induction they progress through transient states
described by higher energy values, and eventually reach another
low-energy phenotype represented by an attractor. As in
Waddington’s metaphor, in each data set we observed sets of
cells positioned along a developmental trajectory, with each point
on the landscape representing a state of the GRN at a specific
time. While Waddington implied that the topography of his
hillside might be dynamic (by depicting interconnected cables
beneath it), here we employ a static weight matrix, so our cells
(networks) map onto a static landscape. Moreover, unlike in the
Waddington metaphor, the trajectories we infer do not run
downhill into a globally low-energy attractor at one edge of a
state-space dimension; rather, we find low-energy states at both
ends of every trajectory.
In principle, the HN model can be applied to contexts other

than normal cellular development. For example, following the
study by Huang,49 who considered cancer as a pre-existing
(but usually unvisited) attractor in his quasi-potential landscape,
we might construct an HN from cancer-progression data and track
trajectories of cells as they progress from a normal to a cancerous
state. We could extend the model by employing targeted
perturbation to measure the contribution of subsets of genes or
TFs to the GRN, and thus to trajectories of disease progression.
As envisioned by Waddington, Kauffman and others, it is thus

possible to compute a robust quantitative landscape model, based

Table 1. Functional analysis of the switched genes across stages of differentiation/development

Case study #Selected probes Transition # Probes
switched

Biological process P-value KEGG pathways P-value

GSE13201 3,753 P7–P4 3,405 Cell fate determination 7.72E− 03 Hedgehog signalling pathway 1.3E− 2
P5–P4 1,861 Cellular differentiation 1.34E− 09 Wnt signalling pathway 8.0E− 2
P6–P4 3,430 System development 9.96E− 12 Basal cell carcinoma 1.3E− 2
P6–P5 2,712 Skeletal system development 1.77E− 10
P7–P5 2,810 Central nervous system

development
1.10E− 09

P7–P6 1,453 Embryo development 9.54E− 09
GSE8091 2,748 E9–E13 2,594 System development 3.48E− 06 Focal adhesion 8.1E− 3

E9–E11 2,169 Developmental process 1.06E− 05
E11–E13 2,430 Cell differentiation 1.14E− 04

THP1-Mac 45 0–96 h 20 Cell differentiation 6.57E− 13 Wnt signalling pathway 7.2E− 5
0–1 h 23 System development 1.05E− 11 B-cell receptor signalling

pathway
1.5E− 3

0–6 h 22 Haemopoiesis 4.88E− 10 PPAR signalling pathway 1.9E− 2
1–6 h 23 MAPK signalling pathway 4.8E− 2
1–96 h 21
1–6 h 23
6–96 h 22

GSE17708 2,620 0–72 h 1,974 Regulation of cell proliferation 1.82E− 02 ECM-receptor interaction 7.1E− 3
0–8 h 1,511 Cell adhesion 1.80E− 3
0–16 h 2,013 Developmental process 4.40E− 01
0–24 h 2,021
8–16 h 1,806

16–24 h 1,606
16–72 h 1,737
8–24 h 1,936

24–72 h 1,478
8–72 h 1,960
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Figure 4. Hopfield energy landscape of a, the second (GSE8091), b, third (THP1-Mac) and c, fourth (GSE17708) case studies. The x and y axes
represent the first and the second principal components of the data; the z axis represents the energy E.
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on empirical data, which reflects the collective behaviour of genes
and TFs in driving cellular differentiation. By providing the
framework for such models, HNs show that developmental
landscapes need not be just a colourful metaphor.

MATERIALS AND METHODS
HN model: general background
An HN consists of nodes and weighted undirected interactions
(represented as an interaction matrix) between these nodes. So-called
patterns, for instance gene-expression profiles, can be stored as the
weights of the network. Stored patterns (even when distorted) can then be
retrieved from the network by a recurrent recall procedure.50 The similarity
of an arbitrary input pattern to a stored pattern can be expressed by an
energy function. Local minima of the energy function are the attractors of
the system, to which input patterns converge during recall. A network can
have multiple attractors with different minimum values. The HN associates
similar stored patterns with the same attractor, whereas distinct stored
patterns tend to be associated with different attractors.
Let S be a set of m samples (cells) under study, and let G= {g1, g2,…,gn}

be the set of genes profiled from these samples. For any sample s∈ S, each
gene is assigned to a node, thereby giving n nodes H(s) = {H1, H2,…,Hn}(s) in
the HN. Each node Hi carries the expression value for gi normalised and
discretized to the values {− 1, 0, 1}. For any pair of nodes (Hi, Hj), Hi≠Hj, we
assign the interaction weight w(Hi, Hj) ∈ [− 1,1] as the co-expression
(computed here as Pearson's correlation) between {gi, gj} across the m
samples and w(Hi, Hi) = 0, resulting in a zero-diagonal symmetric weight
matrix W. For each node Hi, N(Hi) is its set of neighbours (connected
nodes).
Each sample s∈ S, consisting of gene-expression values for the genes in

G, can be stored by iterating through the HN. At each iteration, the node Hi

is updated to

Hi ¼
X

jANðHiÞ
HjwðHi ;HjÞ
� �

;

the weighted sum across all connected nodes of Hi. If w(Hi, Hj)40 then Hi is
updated to a value of the same sign (positive or negative) as Hj, whereas if
w(Hi, Hj)o0 then Hi is updated to a value of the opposite sign as Hj.
Consequently, Hi is either “pulled towards” or “pushed away” from Hj

depending on w(Hi, Hj). After each update, we can capture the extent
of agreement or disagreement between Hi and Hj as an energy function
E(Hi,Hj) =−HiWijHj, with the convention that lower values represent higher
agreement or stability. Thus the energy for the entire network is given by

E HðsÞ½ � ¼ - 1=2HWHT

Table 2. Data sets for the four main case studies

Study data set Summary Microarray platform # Of
samples

Stages of
differentiation/
development

# Of
probes

Kolle et al.52 GSE13201 HES2 embryonic stem cells were sorted by the
presence of GCTM-2 and CD9 into four populations
using Fluorescence Activated Cell Sorting (FACS)
method

Illumina Human-6 v2.0 Expression
BeadChip (Illumina Inc., San
Diego, CA, USA)

12 P7 (×3) 48,687

P6 (×3)
P5 (×3)
P4 (×3)

Hartl et al.43 GSE8091 Transcriptome of embryonic mouse brain
development at 9.5, 11.5 and 13.5 embryonic days

Affymetrix Mouse Genome 430
2.0 Array (Affymetrix Inc., Santa
Clara, CA, USA)

16 E9 (×6) 45,102

E11 (×4)
E13 (×6)

Kouno et al.53 THP1-Mac Temporal gene-expression changes of THP1 single
cells differentiating to macrophages

BioMark Dynamic Arrays of
Fluidigm for single-cell (Fluidigm
Corporation, San Francisco, CA,
USA)

240 0 h (×60) 45

1 h (×60)
6 h (×60)
96 h (×60)

Sartor et al.54 GSE17708 Temporal gene-expression changes during TGF-β-
induced epithelial-mesenchymal transition

Affymetrix Human Genome U133
Plus 2.0 Array (Affymetrix Inc.)

15 0 h (×3) 54,675

8 h (×3)
16 h (×3)
24 h (×3)
72 h (×3)

Figure 5. Workflow of the study. PCA, principal component analysis.
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Such an energy function belongs to the Lyapunov family of monotonically
non-increasing functions,51 in which as the iterations progress and the
values assigned to the nodes are repeatedly updated, E[H(s)] converges to
a low-energy state. This converged energy value represents the attractor
for the sample s, and s is said to have converged to its attractor. This
energy value scales linearly and is unitless. Given this framework, if we
have a collection of samples S ¼ S1; S2; ¼ ; Skf g where each Si represents
a set of samples from a specific stage (or time point) of cellular
differentiation, we expect all samples in Si to converge to the same
attractor in the HN.

Hopfield model for cellular differentiation
Here, we aim to link the values of the HN energy function to stages of
cellular differentiation. We hypothesise that as a cell transits from an initial
to a differentiated state, the interplay (co-variation) between genes
changes (in its GRN), and the cell as a network of genes moves along the
Hopfield energy profile. By computing the energy values based on gene-
expression profiles of samples at different stages of cellular development,
we capture this transition. In particular, we demonstrate that if pair-wise
co-expression coefficients are used to construct the weight matrix, these
energy values indeed reflect the developmental stages of the cell. Tight
correlation corresponds to lower energy values, and looser correlation to
less-favourable energies.
Using sets of cells from different stages of differentiation (e.g.,

pluripotent to differentiated states), here we demonstrate that the
computed energy level reflects the stage of differentiation. Our approach
differs in two main respects from that presented in the study by Maetschke
and Ragan,30 which was based on the standard Hopfield model: we build
the weight matrix using Pearson's correlation rather than Hebbian learning,
and omit the iteration step so as to compute energies that represent the
actual biological states of the network rather than iterated values.
By visualising the transitions between these energy levels, we realise the

landscape of cellular differentiation. The landscape is an n+1 dimensional
space with n dimensions for the genes, and one dimension for the energy
E(H). To visualise this landscape in three dimensions, we render the
surface of the energy landscape by interpolating energy values over a two-
dimensional surface: first the dimensionality of the gene-expression data is
reduced to 2 using principal component analysis (PCA), a regular grid is
constructed with the same dimensions as the reduced data, inverse PCA
is performed to map the grid points to the high-dimensional space, then
E is computed for the grid data.30 In this landscape, the two major principal
components of the n genes serve as our dimensions x and y, and the
energy is represented as the third dimension z. Stages Si are points in this
space, represented here by unique colours (Figure 5).

Case studies and data sets
We constructed HNs for 12 time course data sets covering a broad range of
case studies. Four of these (Table 2) are described here; for the others
see Supplementary Material. The first case study52 analyses HES2 human
embryonic stem (ES) cells. In this study, cells were fractionated by flow
cytometry into different categories of pluripotency based on the
expression of two stem-cell surface markers, GCTM-2 and CD9, yielding
the four groups P7 (GCMT2HIGH-CD9HIGH), P6 (GCMT2MID-CD9MID), P5
(GCMT2LOW-CD9LOW) and P4 (GCMT2−-CD9−). Cells in group P7 are in a
dormant state inducible to pluripotency, whereas P4 cells are committed
to their lineage, and P6 and P5 cells are in intermediate states of
differentiation. The data set includes expression profiles from 12 samples
corresponding to 3 replicates from each category.
The three other case studies cover maturation of embryonic neural cells

during mouse brain development, time course differentiation of THP1
monocyte cells to macrophages and trans-differentiation of epithelial to
mesenchymal cells in cancer (Table 2). Please refer to the Supplementary
Document for detailed description of these data sets. Eight additional case
studies cover time course differentiation of mouse and human ES cells,
induced pluripotent stem cells and organogenesis (Supplementary
Table S1). For each data set, we performed z-score normalisation, followed
by feature selection to extract the probes with the highest variation across
groups and time points. To determine number of features we used the
elbow of the variance plot over features, choosing the number such that
including one more probe does not change the variance.

Robustness analysis
For each data set, we assessed robustness of the energy values by
randomly changing the expression values of a randomly selected subset (5,
10, 20, 50 or 90%) of the feature-selected genes. A new expression value
was randomly chosen from within the interval {− 1, +1}. We then
constructed the HN network as above, and computed E for the network
for each round of perturbation. We also compared the resulting energy
value with that of a random network of the same size (ΔE= Erandom−
Eperturbed). This process was repeated 100 times for each data set and each
proportion of perturbed genes. Please refer to the Supplementary
Document for details.
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