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First-principles treatment of Mott insulators: linearized
QSGW+DMFT approach
Sangkook Choi1,2, Andrey Kutepov2, Kristjan Haule2, Mark van Schilfgaarde3 and Gabriel Kotliar1,2

The theoretical understanding of emergent phenomena in quantum materials is one of the greatest challenges in condensed
matter physics. In contrast to simple materials such as noble metals and semiconductors, macroscopic properties of quantum
materials cannot be predicted by the properties of individual electrons. One of the examples of scientific importance is strongly
correlated electron system. Neither localized nor itinerant behaviors of electrons in partially filled 3d, 4f, and 5f orbitals give rise to
rich physics such as Mott insulators, high-temperature superconductors, and superior thermoelectricity, but hinder quantitative
understanding of low-lying excitation spectrum. Here we present a new first-principles approach to strongly correlated solids. It is
based on a combination of the quasiparticle self-consistent GW approximation and the dynamical mean-field theory. The sole input
in this method is the projector to the set of correlated orbitals for which all local Feynman graphs are being evaluated. For that
purpose, we choose very localized quasiatomic orbitals spanning large energy window, which contains most strongly hybridized
bands, as well as upper and lower Hubbard bands. The self-consistency is carried out on the Matsubara axis. This method enables
the first-principles study of Mott insulators in both their paramagnetic and antiferromagnetic phases. We illustrate the method on
the archetypical charge transfer correlated insulators La2CuO4 and NiO, and obtain spectral properties and magnetic moments in
good agreement with experiments.
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INTRODUCTION
The first-principles description of strongly correlated materials is
currently regarded as one of the greatest challenges in condensed
matter physics. The interplay between correlated electrons in
open d- or f- shell and itinerant band states gives rise to rich
physics that makes these materials attractive for a wide range
of applications such as oxide electronics, high-temperature
superconductors, and spintronic devices. Various theoretical
approaches are currently being pursued.1 One of the most
successful approaches is the dynamical mean-field theory
(DMFT).2 In combination with density functional theory,3,4 it
has described many features of strongly correlated materials
successfully and highlighted the surprising accuracy of treating
correlations local to a small subset of orbitals exactly, while
treating the remainder of the problem in a static mean-field
manner.5

The numerous successes of DMFT in different classes of
correlated materials revived the interest in the long-sought goal
of achieving a diagrammatically controlled approach to the
quantum many-body problem of solids, starting from the Green’s
function G and the screened Coulomb interactions W.6,7 The
lowest order diagram in perturbation theory in this functional
gives rise to the GW approximation,8 whereas the local
approximation applied to the most correlated orbitals gives rise
to an extended DMFT approach to the electronic structure
problem.7 The addition of the GW and DMFT graphs was
proposed and implemented in model Hamiltonian studies9 and
in realistic electronic structure.10,11 There is now intense activity in
this area with many recent publications12–15 triggered by
advances in the quality of the impurity solvers,16,17 insights into

the analytic form of the high-frequency behavior of the
self-energy,18 and improved electronic structure codes.
Several conceptual issues remain to be clarified before the

long-sought goal of a robust electronic structure method for solids
is attained. The first issue is the choice of local orbitals on which to
perform the DMFT method (summation of all local Feynman
graphs). The second issue is the level of self-consistency that
should be used in the calculation of various parts of the diagrams
included in the treatment (free or bare Green’s function G0 versus
self-consistent interacting Green’s functions G). These central
issues are addressed in this letter.
The self-consistency issue appears already at the lowest order,

namely the GW level and it has been debated over time. The
corresponding issue in GW+DMFT is expected to be at least as
important, but has not been explored, except for model
Hamiltonians.19,20 At the GW level, it is now well established that
Hedin’s fully self-consistent formulation,8 while producing good
total energies in solids,21 atoms, and molecules,22,23 does not
produce a good approximation to the spectra of even three-
dimensional electron gas and aluminum in comparison with non-
self-consistent GW results.21,24 Instead, using a free (quasiparticle
(QP)) Green’s function in the evaluation of the polarization graph of
the GW method gives much better results for spectral functions.
This is the basis of the one-shot QP GW, starting from local density
approximation (LDA)25 or from others.26 Unfortunately, the answer
depends on the starting point. A solution for this problem is to
impose a self-consistency equation to determine G0. This method,
called the QP self-consistent GW (QSGW),27 is very successful
reproducing the spectra of many systems.27 How to combine it with
DMFT is an important open challenge.28,29
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Previous GW+DMFT studies typically used a G0, which depends
on the LDA starting point, and projectors spanning a relatively
small energy window.12–15 In this work, we propose a different
approach to the level of self-consistency and the choice of the
DMFT orbital. We do a self-consistent QSGW calculation and then
calculate local self-energy using DMFT with static Ud and JH
without feedback to non-local self-energy within GW. For the
DMFT step, we choose a very localized orbital spanning large
energy window, which contains most strongly hybridized bands,
as well as upper and lower Hubbard bands.
In the LDA+DMFT context, the choice of very localized orbitals

has provided a great deal of universality, as the interactions do not
vary much among compounds of the same family. This has been
demonstrated in the studies of iron pnictides30 and transition
metal oxides.31 This choice results in a second advantage as we
will show below, namely the frequency dependence of the
interaction matrix can be safely ignored. Having chosen the
correlated orbitals, all the other parameters are self-consistently
determined. This is the first ab initio QP self-consistent GW+DMFT
implementation and the first study on a paramagnetic (PM) Mott
insulator within the GW+DMFT method.

RESULTS
Figure 2a shows the frequency dependence of real and imaginary
parts of Ud of La2CuO4 shown in Figure 1. It is calculated on an
imaginary frequency axis and analytically continued by a
maximum entropy method.32 We also plot the fully screened
Coulomb interaction Wd for comparison. Static Ud is 12.0 eV and
Ud remains almost constant up to 10 eV. In contrast, in Wd, there
are several peaks due to low-energy collective excitations below
10 eV. At very high energy, Ud approaches the bare coulomb
interaction of 28 eV. Static value of Upd is 2.0 eV, much smaller
than Ud; hence, we do not discuss its treatment further
(The renormalization of Ud by the nonlocal Coulomb interaction
can be understood by using the definition of Hubbard U by C
Herring. According to Herring,33 the Hubbard U can be obtained
from the reaction of 2 dndpnpð Þ-dndþ1pnp - 1 þ dnd - 1pnpþ1 between
Cu-d and O-p orbitals, where nd and np are the number of
electrons in Cu-d and O-p orbitals, respectively. The energy cost

for the reaction is approximately Ud− 2Upd+Up and this should be
the sum of the renormalized Ud and renormalized Up. In the
simplest case, where we have one electron in p and d orbitals,
renormalized U of Cu-d orbitals is Ud−Upd from the reaction of
d1p1→ d2p0. The renormalized Ud is derived more rigorously by
Schüler et al.34). Calculated JH is 1.4 eV and has negligible
frequency dependence. By contrast, conventional constrained
random phase approximation, in which 10 bands of mostly Cu-3d
character are excluded from screening, results in static Ud = 7.6 eV,
which is too small to open the Mott gap, and which is also
inconsistent with photoemission experiments on CuO charge
transfer insulators.35

We introduced a complementary method to compute the static
Ud. The key idea is to first calculate the excitation spectra of
La2CuO4 within Matsubara QSGW (MQSGW)+DMFT using local GW
(with a static Ud) as the impurity solver and then determine Ud, by
finding the value that best matches the full spin-polarized
MQSGW spectra. The procedure starts from the non-spin-
polarized MQSGW band structure without magnetic long-range
order. We then allow spontaneous magnetic long-range order by
embedding a polarized impurity self-energy for the Cu-3d
electrons computed in a local GW approximation. We find that
indeed magnetic ordering associated with Cu-3d is captured by
spin-polarized local MQSGW using a static value of Ud and JH, and
spectral properties such as energy gap are very similar in value to
the full spin-polarized MQSGW spectra. In Figure 2b, we allowed
Ud to vary between 8 and 13 eV (at fixed JH = 1.4 eV) and we plot
the size of the indirect gap. The gap size of this method matches

Figure 1. Atomic structure and first Brillouin zone of La2CuO4.
(a) Atomic structure of La2CuO4 in the single face-centered
orthorhombic phase. Lanthanum atoms are represented by green
spheres, copper atoms by blue spheres in the blue octahedrons, and
oxygen atoms by red spheres. The structure is characterized by an
alternating rotation of successive CuO6 octahedra along the x
direction. (b) First Brillouin zone of single face-centered orthorhom-
bic phase. Red lines show the path along which electronic band
structures are plotted in Figures 2c and 3.

Figure 2. Hubbard U associated with Cu-3d orbitals in La2CuO4. (a)
Frequency dependence of Wd (dashed lines) and Ud (full lines) of
La2CuO4 with a χ lowQP defined in the energy window EF ± 10 eV. Real
and imaginary parts of the parameter are marked by red and blue
colors, respectively. (b) Bandgap dependence on Ud, in La2CuO4,
evaluated with impurity self-energy within spin-polarized GW
approximation with JH = 1.4 eV. The black dashed line represents
bandgap within spin-polarized Matsubara QP self-consistent GW
(MQSGW). (c) Spectral function of La2CuO4 with Ud = 12 eV and
JH = 1.4 eV. The black dashed-lines show band structures within spin-
polarized MQSGW.
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the gap of spin-polarized MQSGW when Ud≈12 eV. If this choice of
Ud and JH is correct, the resulting spectra must be similar to the
prediction of spin-polarized MQSGW method. We show this
comparison in Figure 2c to confirm a good match. In addition, the
relative position of the Cu-d band (the lowest energy conduction
band at S) to the La-d band (the lowest energy conduction band at
Y) is also well matched, justifying the approximation of

Σ̂
DC

ionð ÞC Σ̂
DC

ion ¼ 0ð Þ. ΣDC(iωn = 0) for Cu-dx2 - y2 orbital differs
from nominal double counting energy36 by only 1%, highlighting
again the advantages of using a broad window and narrow
orbitals.
We now discuss the magnetic moment associated with Cu and

the electronic excitation spectra of La2CuO4 by using MQSGW
+DMFT (with Ud = 12.0 eV, JH = 1.4 eV) in which the impurity is
solved by the numerically exact continuous-time quantum Monte-
Carlo16,17 and compare them with other methods. Local spin
density approximation does not have a magnetic solution. In
contrast, spin-polarized MQSGW, QSGW,27 and MQSGW+DMFT
predict 0.7 μB, 0.7 μB, and 0.8 μB, respectively. This is consistent
with experimental measurements, although the later span quite
large range 0.4 ~ 0.8 μB.

37–39

In the low-energy spectrum of La2CuO4, local spin density
approximation does not have an insulating solution; there is a
single non-magnetic solution with zero energy gap as shown in
the bandstructure(Figure 3a) and total density of states
(Figure 4a). The non-spin-polarized MQSGW also predicts metal
as shown in Figure 4a, but the two bands of primarily Cu-dx2 - y2
character near the Fermi level are well-separated from the rest of
the bands (dashed lines in Figure 3b). Spin-polarized MQSGW
calculation (dashed lines in Figure 3c) yields qualitative different
results from local spin density approximation and non-spin-
polarized MQSGW calculation. The two Cu-dx2 - y2 bands are now
well separated from each other with a bandgap of 3.4 eV.
Spin-polarized QSGW27 also yields insulating phase with a gap
of 4.0 eV. In the experiment, the larger direct gap, as measured by
optics, is ~ 2 eV.40,41

We show that these deficiencies of LDA, QSGW and MQSGW in
the low-energy spectra can be remedied by adding all local
Feynman diagrams for the Cu-d orbitals using the DMFT. The LDA
+DMFT calculation in Figure 4a, carried out by the all-electron LDA
+DMFT method,31,36 predicts reasonable gap of 1.5 and 1.8 eV in
PM and antiferromagnetic (AFM) phases, in good agreement with
experiment and previous LDA+DMFT studies.31,42–45 Within
MQSGW+DMFT, we find gaps of 1.5 and 1.6 eV in PM and AFM
phases, respectively, as shown in Figure 4b. The excitation spectra
of MQSGW+DMFT in PM and AFM phase as shown in Figure 3b,c
are very similar, as both are insulating with well-separated

Figure 4. The density of states of La2CuO4. (a) Total density of states
of La2CuO4 from local density approximation (LDA) (magenta), LDA
+dynamical mean-field theory (DMFT) (green), Matsubara QP self-
consistent GW (MQSGW) (red), and MQSGW+DMFT (blue). Full lines
and dashed lines represent quantities within non-spin-polarized and
spin-polarized versions of each calculation, respectively. The cyan
dotted line shows photoemission/inverse photoemission data.46 The
positions of La-f peaks are marked by arrows. (b) A zoom-in view in
the low-energy region. (c) The overlap of total density of states of
La2CuO4 within LDA+DMFT as well as MQSGW+DMFT and photo-
emission/inverse photoemission data.46

a b c

Figure 3. The low-energy spectral function of La2CuO4. (a) Electronic bandstructures of La2CuO4 within local spin density approximation and
spectral functions from (b) non-spin-polarized Matsubara QP self-consistent GW (MQSGW)+dynamical mean-field theory (DMFT) (c) and spin-
polarized MQSGW+DMFT calculations along the path shown in Figure 1b. The dashed lines in b, c represent electronic band structures within
non-spin-polarized MQSGW and spin-polarized MQSGW, respectively.
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Cu-dx2 - y2 bands, which is now also substantially broadened due to
large scattering rate in Hubbard-like bands. In addition, MQSGW
+DMFT improves the line-shape of LDA+DMFT. Near the top of the
valence bands with oxygen p character, the lineshape within LDA
+DMFT is too sharp in comparison with the experiments as shown
in Figure 4c. By treating oxygen p levels within GW, the lineshape
becomes smoother and in a better agreement with experiments.
In the high-energy region of La2CuO4, the most distinctive

difference is the position of La-f peak. It appears at ~ 3 eV
within LDA and LDA+DMFT, but at around ~ 9 eV in the
inverse-photoemission spectra (cyan dotted line in Figure 4a).46

By treating La-f within GW approximation, it appears at ~ 10 eV
within MQSGW and MQSGW+DMFT. The underestimation of
unoccupied La-f excitation energy is attributed to the local
approximation to the electron self-energy within LDA. Within LDA,
Hartree and exchange-correlation potential applied to La-f orbitals
are orbital independent, as charge density is averaged over 14
different m channels.47 In contrast, these potentials within
MQSGW are orbital dependent and non-local. The effect of
orbital-dependent potential can be tested within LDA+U
approaches, as LDA+U adds orbital-dependent potential and
subtracts orbital-independent potential explicitly3. From LDA+U
approaches, we can also understand MQSGW better, as LDA+U
can be regarded as a local and static approximation to GW
approximation3. According to Czyzyk and Sawatzky48, La-f peaks
shift from EF+3 eV to EF+3 eV+U/2 with U= 11 eV for La-f.
We also tested our proposed scheme with one more charge

transfer insulator, NiO. Figure 5a shows the frequency dependence
of Ud and Wd for the Ni-3d orbitals in the low-energy region. In
contrast to Wd, Ud is almost constant up to 5 eV. Static Ud is 9.6 eV.
In the high-energy limit, Ud and Wd approach the bare value of

26.0 eV. Calculated JH for the Ni-3d orbitals has negligible
frequency dependence and static JH is 1.4 eV. Figure 5b shows
the total density of states of NiO within LDA+DMFT and MQSGW
+DMFT in its PM phase. Photoemission/inverse photoemission
data are also plotted for comparison.49 The LDA+DMFT calculation
is being carried out by the all-electron LDA+DMFT method36 with
Ud = 10 eV, JH = 0.9 eV and nominal double-counting energy. In the
PM phase, LDA+DMFT and MQSGW+DMFT predict insulator in an
agreement with previous LDA+DMFT studies,50,51 but MQSGW
+DMFT improves the lineshape of LDA+DMFT. Near the top of the
valence bands, the lineshape within LDA+DMFT is too sharp in
comparison with the experiments. By treating oxygen p levels
within GW, the lineshape becomes smoother and in a better
agreement with experiments. In the AFM phase, magnetic
moment associated with Ni-d orbitals is 1.6 μB within MQSGW
+DMFT, in agreement with experimental value of 1.6–1.9 μB.

50,52,53

In summary, we introduced a new methodology within MQSGW
+DMFT and tested it in the classic charge transfer insulator
La2CuO4 and NiO. Our methodology predicts a Mott-insulating
gap in the PM phase, thus overcoming the limitation of LDA and
QSGW. It yields more precise peak positions of the La-f states in
La2CuO4 and valence band lineshape, thus improving the results
of LDA+DMFT. The method should be useful in understanding
electronic excitation spectrum of other strongly correlated
materials, in particular, those where precise position of both the
itinerant and correlated states is important.

METHODS
Our approach is carried out entirely on the Matsubara axis, which
requires a different approach to the QP self-consistency in GW,54

called MQSGW, where the QP Hamiltonian is constructed by linearizing
the self-energy and renormalization factor (MQSGW is a form of QP
self-consistency that replaces Σ̂ ionð Þ with Σ̂ 0ð Þ þ ionΣ̂

0
0ð Þ on the

Matsubara axis. It is similar to, but not identical with the form in
reference 55 on the real frequency axis, which replaces i Σ̂ oð Þ�� ��j

� �
with

Re i Σ̂ εið Þ�� ��j
� �þ i Σ̂ εj

� ��� ��j
� �� �

=2, derived from a norm minimization principle.
Here, εi and ij i are QP energy and wavefunction, respectively.). Working on
the Matsubara axis is numerically very stable, provide a natural interface
with advanced DMFT solvers such as continuous-time quantum Monte-
Carlo,16,17 and has very good scaling in system size as in the space-time
method (see Supplementary Note on MQSGW calculations).
For DMFT, it is essential to obtain bandstructures in a fine enough crystal

momentum (k) mesh to attain desired frequency resolution of
physical quantities. To achieve such momentum resolution, we use a
Wannier-interpolated MQSGW bandstructure in a large energy window
using maximally localized Wannier function56 and then constructed local
projector in a fine momentum mesh. In contrast to SrVO3,

12–15 where a set
of t2g states is reasonably well separated from the other bands, correlated
3d orbitals in La2CuO4 and NiO, and are strongly hybridized with other
itinerant bands. In this case, it is necessary to construct local projectors
from states in a wide-enough energy windows to make projectors localized
near the correlated atoms. We constructed local projectors in the energy
window EF ± 10 eV in which there are ~ 82 bands at each k point, where EF
is the Fermi level for La2CuO4. For NiO, we constructed local projectors in
the energy window of EF− 11 eV to EF+10 eV. Next, we confirmed that
absolute value of its overlap to the muffin-tin orbital (of which radial
function is determined to maximize electron occupation in it) is > 95%.
Our choice of energy window is justified by the Cu-3d spectra being
entirely contained in this window. Using constructed maximally
localized Wannier function s, we defined our local projector
Pi;n kð Þ ¼ P

R WRi ψnkj ie - ikUR= ffiffiffiffiffiffi
Nk

p�
, where WRi(r) is the maximally localized

Wannier function with an index i, ψnk rð Þ is the QP wavefunction with an
index n, and Nk is the number of k points in the first Brillouin zone.
Static Ud and JH are evaluated by a modification of the constrained

random phase approximation method,57 which avoids screening by the
strongly hybridized bands. This screening by hybridization is included in
our large-energy window DMFT. For details, see Supplementary Note on Ud

and JH. We divide dynamic polarizability within MQSGW approximation χQP
into two parts, χQP ¼ χ lowQP þ χhighQP . Here, χ lowQP is defined by all transitions
between the states in the energy window accounted for by the DMFT
method (EF ± 10 eV for La2CuO4 and EF− 11 eV to EF+10 eV for NiO).

Figure 5. Hubbard U associated with Ni-3d orbitals in NiO (a)
Frequency dependence of Wd (dashed lines) and Ud (full lines) of
NiO, with a χ lowQP defined in the energy window in EF− 11 eV to
EF+10 eV. Real and imaginary parts of the parameter are marked by
red and blue colors, respectively. (b) Total density of states of NiO
within LDA+dynamical mean-field theory (DMFT) (green) and
Matsubara QP self-consistent GW (MQSGW)+DMFT (blue). The cyan
dotted line shows photoemission/inverse photoemission data.49
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Using χhighQP , we evaluate partially screened Coulomb interaction

U - 1 r; r0; k; ionð Þ ¼ V - 1 r; r0; kð Þ - χhighQP r; r0; k; ionð Þ and parametrize static
Ud and JH by Slater’s integrals,58,59 where V is bare Coulomb interaction.
The Feynman graphs included in both MQSGW and DMFT (double

counting) are the local Hartree and the local GW diagram. They are
computed using the local projection of the MQSGW Green’s function ĜQP

� �

Ĝ
loc
QP ionð Þ ¼ 1

Nk

P
k P̂ kð ÞĜQP k; ionð ÞP̂y kð Þ and the local Coulomb matrix

constructed from Slater’s integrals. For the details, see Supplementary
Note on double counting energy.
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